An algebra problem by xi guan

Algebra Level 3

Find all the possible values of x x satisfying x 2 17 x 2 x 2 17 x 22 = 2 \sqrt{x^2-17x-2} - \sqrt{x^2-17x-22} = 2 .

19 and -2 -19 and 2 19 19 and 2 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x 2 17 x 2 x 2 17 x 22 = 2 x 2 17 x 12 + 10 x 2 17 x 12 10 = 2 Let u = x 2 17 x 12 u + 10 u 10 = 2 Squaring both sides u + 10 2 u 2 1 0 2 + u 10 = 4 Divide by 2 both sides and rearrange. u 2 = u 2 100 Squaring both sides u 2 4 u + 4 = u 2 100 4 u = 104 u = 26 Put back u = x 2 17 x 12 x 2 17 x 12 = 26 x 2 17 x 38 = 0 ( x 19 ) ( x + 2 ) = 0 x = 19 and 2 \begin{aligned} \sqrt{x^2-17x-2} - \sqrt{x^2-17x-22} & = 2 \\ \sqrt{{\color{#3D99F6}x^2-17x-12}+10} - \sqrt{{\color{#3D99F6}x^2-17x-12}-10} & = 2 & \small \color{#3D99F6} \text{Let }u = x^2-17x-12 \\ \sqrt{{\color{#3D99F6}u}+10} - \sqrt{{\color{#3D99F6}u}-10} & = 2 & \small \color{#3D99F6} \text{Squaring both sides} \\ u+10 - 2\sqrt{u^2-10^2} + u -10 & = 4 & \small \color{#3D99F6} \text{Divide by 2 both sides and rearrange.} \\ u - 2 & = \sqrt{u^2-100} & \small \color{#3D99F6} \text{Squaring both sides} \\ u^2 - 4u + 4 & = u^2 - 100 \\ 4u & = 104 \\ \implies \color{#3D99F6} u & = 26 & \small \color{#3D99F6} \text{Put back }u = x^2-17x-12 \\ \color{#3D99F6} x^2-17x - 12 & = 26 \\ x^2-17x-38 & = 0 \\ (x-19)(x+2) & = 0 \\ \implies x & = \boxed{19 \text{ and }-2} \end{aligned}

Maybe the fastest way is substituting all values given.

. . - 2 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...