This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Can you provide a geometric description of this? Cheers
Doesn’t this represent a cube with sides of 2 units
"Doesn’t this represent a cube with sides of 2 units"
Let x= ((squroot 2)^squroot 2)^squroot 2. Now take logarithms. So Log x = log (((squroot 2)^squroot 2)^squroot 2). Hence Log x = (squroot 2) x log ((squroot 2)^squroot 2). (This is a property of logarithms!). And so hence Log x = (squroot 2) x (squroot 2 x log (squroot 2). Hence Log x = 2 x log (squroot 2). Now do the reverse process. Hence Log x = log ((squroot 2)^2). Hence log x = log 2. Hence x = 2. Regards, David
(2^1/2)^(2^1/2)^(2^1/2)=(2^1/2)^2 =2^({1/2}*2) =2^1 =2
(2^1/2)^(2^1/2)^(2^1/2)=(2^1/2)^2 =2^({1/2}*2) =2^1 =2
Put expression ((√2)^√2)√2=y apply (ln) function for two sides so √2ln(√2)^√2=ln(y) =√2 √2ln(2)^1/2= 1/2 (2)*ln(2)=ln(y) so y=2######
When evaluating towering exponents, we use the following rule:
a^b^c = a^bc
Therefore, (sqrt(2))^sqrt(2)^sqrt(2) = sqrt(2)^sqrt(2) • sqrt(2) = sqrt(2)^2 = 2
Problem Loading...
Note Loading...
Set Loading...
( 2 ) 2 × 2 = ( 2 ) 2 = 2