Square root \sqrt{\text{Square root}}

Algebra Level 1

Simplify

( ( 2 ) 2 ) 2 . \large \left(\left(\sqrt 2\right)^{\sqrt2}\right)^{\sqrt2}.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Nazmus Sakib
Oct 16, 2017

( 2 ) 2 × 2 = ( 2 ) 2 = 2 \huge(\sqrt{2})^{\sqrt{2} \times\sqrt{2}}=(\sqrt{2})^{2}=\boxed{2}

Can you provide a geometric description of this? Cheers

Peter Stiphout - 3 years, 7 months ago

Doesn’t this represent a cube with sides of 2 units

Peter Stiphout - 3 years, 7 months ago

"Doesn’t this represent a cube with sides of 2 units"

Keian Daniel SMS Abantao - 3 years, 7 months ago
David Fairer
Nov 21, 2017

Let x= ((squroot 2)^squroot 2)^squroot 2. Now take logarithms. So Log x = log (((squroot 2)^squroot 2)^squroot 2). Hence Log x = (squroot 2) x log ((squroot 2)^squroot 2). (This is a property of logarithms!). And so hence Log x = (squroot 2) x (squroot 2 x log (squroot 2). Hence Log x = 2 x log (squroot 2). Now do the reverse process. Hence Log x = log ((squroot 2)^2). Hence log x = log 2. Hence x = 2. Regards, David

Sumukh Bansal
Oct 23, 2017

(2^1/2)^(2^1/2)^(2^1/2)=(2^1/2)^2 =2^({1/2}*2) =2^1 =2

Martin David
Nov 20, 2017

(2^1/2)^(2^1/2)^(2^1/2)=(2^1/2)^2 =2^({1/2}*2) =2^1 =2

Amed Lolo
Nov 20, 2017

Put expression ((√2)^√2)√2=y apply (ln) function for two sides so √2ln(√2)^√2=ln(y) =√2 √2ln(2)^1/2= 1/2 (2)*ln(2)=ln(y) so y=2######

Hunter Edwards
Oct 31, 2017

When evaluating towering exponents, we use the following rule:

a^b^c = a^bc

Therefore, (sqrt(2))^sqrt(2)^sqrt(2) = sqrt(2)^sqrt(2) • sqrt(2) = sqrt(2)^2 = 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...