Square and a Point

Geometry Level 4

Point Q Q inside square A B C D ABCD is such that A Q = 159 \overline{AQ} = \sqrt{159} , B Q = 39 \overline{BQ}=\sqrt{39} , and C Q = 219 \overline{CQ}= \sqrt{219} . If the largest possible side length of square A B C D ABCD is k 4 \sqrt[4]{k} , find k 2020 k-2020 .


The answer is 87980.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Guilherme Niedu
Apr 16, 2020

From the figure above, and calling the square side as l l , we have:

( 1 ) x 2 + y 2 = 39 \large \displaystyle \color{#D61F06} (1) \color{#333333} \ x^2 + y^2 = 39

( 2 ) ( l x ) 2 + y 2 = l 2 2 l x + x 2 + y 2 = 159 \large \displaystyle \color{#D61F06} (2) \color{#333333} \ (l-x)^2 + y^2 = l^2 - 2lx + x^2 + y^2 = 159

( 3 ) ( l y ) 2 + x 2 = l 2 2 l y + y 2 + x 2 = 219 \large \displaystyle \color{#D61F06} (3) \color{#333333} \ (l-y)^2 + x^2 = l^2 - 2ly + y^2 + x^2 = 219

Plugging ( 1 ) (1) into ( 2 ) (2) and ( 3 ) (3) :

( 4 ) l 2 2 l x = 120 \large \displaystyle \color{#D61F06} (4) \color{#333333} \ l^2 - 2lx = 120

( 5 ) l 2 2 l y = 180 \large \displaystyle \color{#D61F06} (5) \color{#333333} \ l^2 - 2ly = 180

Making ( 5 ) ( 4 ) (5) - (4) :

2 l x 2 l y = 60 \large \displaystyle 2lx - 2ly = 60

2 l ( x y ) = 60 \large \displaystyle 2l(x - y) = 60

( 6 ) x = 30 l + y \large \displaystyle \color{#D61F06} (6) \color{#333333} \ \large \displaystyle x = \frac{30}{l} + y

Now substituting ( 6 ) (6) into ( 1 ) (1) :

900 l 2 + 60 l y + y 2 + y 2 = 39 \large \displaystyle \frac{900}{l^2} + \frac{60}{l}y + y^2 + y^2 = 39

Multiplying by l 2 l^2 on both sides:

( 7 ) 2 y 2 l 2 + 60 l y + 900 = 39 l 2 \large \displaystyle \color{#D61F06} (7) \ \color{#333333} 2y^2 l^2 + 60ly + 900 = 39l^2

From ( 5 ) (5) , muliplying by 30 on both sides we can obtain:

( 8 ) 60 l y = 30 l 2 5400 \large \displaystyle \color{#D61F06} (8) \ \color{#333333} 60ly = 30l^2 - 5400

And also from ( 5 ) (5) :

2 l y = l 2 180 \large \displaystyle 2ly = l^2 - 180

Squaring:

4 l 2 y 2 = l 4 360 l 2 + 32400 \large \displaystyle 4l^2y^2 = l^4 - 360l^2 + 32400

( 9 ) 2 l 2 y 2 = l 4 360 l 2 + 32400 2 \large \displaystyle \color{#D61F06} (9) \ \color{#333333} 2l^2y^2 = \frac{l^4 - 360l^2 + 32400}{2}

Substituting ( 8 ) (8) and ( 9 ) (9) into ( 7 ) (7) :

l 4 360 l 2 + 32400 2 + 30 l 2 5400 + 900 = 39 l 2 \large \displaystyle \frac{l^4 - 360l^2 + 32400}{2} + 30l^2 - 5400 + 900 = 39l^2

Multiplying by 2 2 on both sides:

l 4 360 l 2 + 32400 + 60 l 2 9000 = 78 l 2 \large \displaystyle l^4 - 360l^2 + 32400 + 60l^2 - 9000 = 78l^2

l 4 378 l 2 + 23400 = 0 \large \displaystyle l^4 - 378l^2 + 23400 = 0

From this, we have:

l 2 = 378 ± 37 8 2 4 14400 2 \large \displaystyle l^2 = \frac{378 \pm \sqrt{378^2 - 4\cdot 14400}}{2}

l 2 = 378 ± 222 2 \large \displaystyle l^2 = \frac{378 \pm 222}{2}

Since we want the larger l l :

l 2 = 300 \color{#20A900} \boxed{ \large \displaystyle l^2 = 300}

Since l = k 4 l = \sqrt[4]{k} , k = l 4 k = l^4 , so:

k = 90000 , k 2020 = 87980 \color{#3D99F6} \large \displaystyle k = 90000, \boxed{ \large \displaystyle k - 2020 = 87980}

Chew-Seong Cheong
Apr 16, 2020

Let the center of square A B C D ABCD be the origin O ( 0 , 0 ) O(0,0) of the x y xy -plane, its side length be 2 a 2a and Q ( x , y ) Q(x,y) . Then A ( a , a ) A(-a,-a) , B ( a , a ) B(a,-a) , C ( a , a ) C(a,a) , and D ( a , a ) D(-a,a) and by Pythagorean theorem :

{ ( x + a ) 2 + ( y + a ) 2 = 159 . . . ( 1 ) ( x a ) 2 + ( y + a ) 2 = 39 . . . ( 2 ) ( x a ) 2 + ( y a ) 2 = 219 . . . ( 3 ) \begin{cases} (x+a)^2 + (y+a)^2 = 159 & ...(1) \\ (x-a)^2 + (y+a)^2 = 39 & ...(2) \\ (x-a)^2 + (y-a)^2 = 219 & ...(3) \end{cases}

Then ( 1 ) ( 2 ) : 4 a x = 120 a x = 30 (1)-(2): \ \implies 4ax = 120 \implies ax = 30 and ( 2 ) ( 3 ) : 4 a y = 180 a y = 45 (2)-(3): \ \implies 4ay = -180 \implies ay = -45 and

( 1 ) : x 2 + 2 a x + a 2 + y 2 + 2 a y + a 2 = 159 x 2 + 60 + a 2 + y 2 90 + a 2 = 159 x 2 + y 2 + 2 a 2 = 189 Multiply both sides by a 2 a 2 x 2 + a 2 y 2 + 2 a 4 = 189 a 2 3 0 2 + ( 45 ) 2 + 2 a 4 = 189 a 2 2 a 4 189 a 2 + 2925 = 0 ( 2 a 2 39 ) ( a 2 75 ) = 0 Taking the larger a a = 75 \begin{aligned} (1): \quad x^2 + 2ax + a^2 + y^2 + 2ay + a^2 & = 159 \\ x^2 + 60 + a^2 + y^2 - 90 + a^2 & = 159 \\ x^2 + y^2 + 2a^2 & = 189 & \small \blue{\text{Multiply both sides by }a^2} \\ a^2x^2 + a^2y^2 + 2a^4 & = 189a^2 \\ 30^2 + (-45)^2 + 2a^4 & = 189a^2 \\ 2a^4 - 189a^2 + 2925 & = 0 \\ (2a^2-39)(a^2-75) & = 0 & \small \blue{\text{Taking the larger }a} \\ \implies a & = \sqrt{75} \end{aligned}

Therefore the largest side length of square A B C D ABCD , 2 a = 2 75 = 300 = 90000 4 2a = 2\sqrt{75} = \sqrt{300} = \sqrt[4]{90000} k 2020 = 90000 2020 = 87980 \implies k - 2020 = 90000 -2020 = \boxed{87980} .

S c a l e 1 u n i t = 3 . 66 X 2 2 13 53 86 X 2 2 13 73 ( 1 ( 66 X 2 2 13 53 ) 2 ) ( 1 ( 86 X 2 2 13 73 ) 2 ) = 126 2 X 2 2 53 73 S o 66.86 152 X 2 + X 4 ( X 8 304 X 6 + 27904 X 4 750400 X 2 + 5760000 ) 26 = 126 2 X 2 ( 2400 100 X 2 + X 4 ) = X 8 304 X 6 + 27904 X 4 750400 X 2 + 5760000 ( 2400 100 X 2 + X 4 ) 2 = X 8 304 X 6 + 27904 X 4 750400 X 2 + 5760000 S o X 8 200 X 6 + 14800 X 4 480000 X 2 + 5760000 = X 8 304 X 6 + 27904 X 4 750400 X 2 + 5760000 X 2 0. 104 X 4 13104 X 2 + 270400 = 0. S o l v i n g q u a d r a t i c i n X 2 , X 2 = 26 o r 100. P o s s i b l e s o l u t i o n , ( k 4 ) 2 = 100 , k = 1 0 4 u n i t s = ( 10 3 ) 4 = 90000. S o k 2020 = 87980. Scale~~1~unit = \sqrt3.\\ \dfrac{66-X^2}{2*\sqrt{13*53}}*\dfrac{86-X^2}{2*\sqrt{13*73}} -\sqrt{ \left(1-\left(\dfrac{66-X^2}{2*\sqrt{13*53}}\right)^2 \right)* \left(1- \left(\dfrac{86-X^2}{2*\sqrt{13*73}}\right)^2 \right)}\\ =\dfrac{126-2*X^2}{2*\sqrt{53*73}}\\ ~~~~ \\ So~\dfrac{ 66.86-152X^2 + X^4 - (\sqrt{ X^8-304 X^6+27904X^4 - 750400X^2+5760000} )}{26}=126 - 2*X^2\\ ~~~~ \\ \implies~(2400-100X^2 + X^4)=\sqrt{ X^8-304 X^6+27904X^4 - 750400X^2+5760000} \\ \therefore~ (2400-100X^2 + X^4)^2= X^8-304 X^6+27904X^4 - 750400X^2+5760000\\ So~ X^8 - 200X^6 + 14800X^4 - 480000X^2 + 5760000\\ = ~~X^8 - 304 X^6 + 27904X^4 - 750400X^2 + 5760000 \\ X^2\neq 0. \\ \implies~104X^4 - 13104X^2 + 270400= 0.\\~~~~ \\ Solving~quadratic~in ~X^2,\\ X^2=26~~or~~100.\\ Possible~ solution,~~(\sqrt[4] k)^2 =100, ~~\implies~k=10^4~units=(10\sqrt3)^4=90000. \\ So~~k-2020=\Large \color{#D61F06}{87980}.

Niranjan Khanderia - 1 year, 1 month ago

Log in to reply

Good use of Desmos software. But you are suppose to use algebra and trigonometry to solve problems here not software.

Chew-Seong Cheong - 1 year, 1 month ago

Log in to reply

Thanks. I am giving the solution you mention.

Niranjan Khanderia - 1 year, 1 month ago
Chris Lewis
Apr 16, 2020

Coordinate approach: Take B B as the origin, let the x x -axis run from right to left (or flip the diagram), let the side of the square be s s and let the coordinates of Q Q in this system be ( u , v ) (u,v) .

Then the information given (using Pythagoras) becomes: u 2 + v 2 = 39 ( s u ) 2 + v 2 = 159 u 2 + ( s v ) 2 = 219 \begin{aligned} u^2+v^2 &=39 \\ (s-u)^2+v^2 &=159 \\ u^2+(s-v)^2 &=219 \end{aligned}

We can eliminate u u and v v by subtracting the first equation from the second and third in turn: s 2 2 s u = 120 u = s 2 120 2 s s 2 2 s v = 180 v = s 2 180 2 s \begin{aligned} s^2-2su=120 &\Rightarrow u=\frac{s^2-120}{2s} \\ s^2-2sv=180 &\Rightarrow v=\frac{s^2-180}{2s} \end{aligned}

Now we can substitute back into the first equation to get: ( s 2 120 ) 2 + ( s 2 180 ) 2 4 s 2 = 39 \frac{\left(s^2-120 \right)^2+\left(s^2-180 \right)^2}{4s^2} = 39

Expanding and tidying up gives s 4 378 s 2 + 23400 = 0 s^4 - 378s^2 + 23400=0

This is easily solved by treating it as a quadratic in s 2 s^2 . The positive roots we get are s = 10 3 s=10\sqrt3 and s = 78 s=\sqrt{78} . We're told to take the larger of these, which is the first; the answer is then s 4 2020 = 87980 s^4-2020=\boxed{87980} . It's worth noting, though, that the smaller positive value of s s places the point Q Q outside the square A B C D ABCD ; there is a unique solution inside the square.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...