Square is the way

Find all the integer values for n n such that n 2 + 20 n + 11 n^2+20n+11 is a perfect square. Give the answer as n 1 2 + n 2 2 + + n k 2 n_1^2+n_2^2+\ldots+n_k^2 .


The answer is 4250.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Drop TheProblem
Aug 10, 2015

n 2 + 20 n + 11 = k 2 n^2+20n+11=k^2

n 2 + 20 n + 11 + 100 100 = k 2 n^2+20n+11+100-100=k^2

n 2 + 20 n + 100 89 = k 2 n^2+20n+100-89=k^2

( n + 10 ) 2 k 2 = 89 (n+10)^2-k^2=89

( n + 10 k ) ( n + 10 + k ) = 89 (n+10-k)(n+10+k)=89

1) { n + 10 k = 89 n + 10 + k = 1 \begin{cases} n+10-k=89\\n+10+k=1 \end{cases}

2) { n + 10 + k = 89 n + 10 k = 1 \begin{cases} n+10+k=89\\n+10-k=1 \end{cases}

3) { n + 10 k = 89 n + 10 + k = 1 \begin{cases} n+10-k=-89\\n+10+k=-1 \end{cases}

4) { n + 10 + k = 89 n + 10 k = 1 \begin{cases} n+10+k=-89\\n+10-k=-1 \end{cases}

For system 1) and 2) n = 35 , k 2 = 1936 \rightarrow n=35, k^2=1936

For system 3) and 4) n = 55 , k 2 = 1936 \rightarrow n=-55, k^2=1936

In conclusion 3 5 2 + ( 55 ) 2 = 4250 35^2+(-55)^2=\boxed{4250}

why did you add and subtract 100 in the second step??????????????

bhumika sharma - 5 years, 9 months ago

Log in to reply

he is completing the square

sumit cooooool - 5 years, 9 months ago

If he does not subtract 100 then we will have 100 as constant term not 11

Satyajit Ghosh - 5 years, 7 months ago

Log in to reply

She didn't mean to ask that. She meant that why only 100? And that's because only 100 will complete the square as n^2+20n+100=(n+10)^2

Kushagra Sahni - 5 years, 2 months ago

S t a n d a r d m e t h o d . f ( x ) = x 2 + 2 a x + b , c o n s t a n t s i n t e g e r s , a , b g i v e n . F i n d v a l u e s o f x t h a t m a k e s f ( x ) = k 2 a p e r f e c t s q u a r e . B e i n g a q u a d r a t i c t h e r e w i l l b e t w o s o l u t i o n s . f ( x ) = ( x + a ) 2 k 2 = ( a 2 b ) . F a c t o r ( a 2 b ) i n t o t w o f a c t o r s . M a n d N ( M o r N c a n e v e n b e = ± 1. ) C o m p a r e t h e s e t w o f a c t o r s w i t h t h e s e t w o ( x + a + k ) ( x + a k ) a n d g e t t w o e q u a t i o n s ( x + a + k ) = M a n d ( x + a k ) = N a n d v a l u e o f x 1 f o u n d a n d t h e n o f k 1 k 1 2 . a n d , ( x + a + k ) = M a n d ( x + a k ) = N a n d t h e s e c o n d v a l u e o f x 2 f o u n d a n d t h e n o f k 2 k 2 2 . I n t h i s p r o b l e m a = 10 , a n d b = 11. M = 89 , N = 1. S o l v i n g , x 1 = 35 , x 2 = 55. Standard~ method.~~f(x)=x^2+2ax +b, ~constants~ integers, ~a,~b~given.~~Find~values ~of~x~that~makes~f(x)=k^2~ a ~perfect~square.\\ Being~a~quadratic~there~will~be~two~solutions.\\ f(x)~=~(x+a)^2-k^2=(a^2-b).~~\\ Factor~(a^2-b)~into~ two~ factors.~M~and~N~~~(M~or~N~~can~even~be~=\pm 1.)\\ Compare~these~two~factors~with~these~two~(x+a+k)(x+a-k)~and~get~~two~equations~~\\ (x+a+k)=M~~and~~(x+a-k)=N~and~value~of~x_1~found~and~ then~of~k_1~\therefore~k_1^2.~~and,\\ (x+a+k)= - M~~and~~(x+a-k)= - N~and~the~second~value~of~x_2~found~and~ then~of~k_2~\therefore~k_2^2.\\ In~this~problem~~a=10,~and~b=11.~~M=89,~~N=1.~~Solving,~~x_1=35,~~x_2= - 55.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...