Square numbers Problem

Algebra Level 3

Real numbers a a , b b , and c c are such that a 2 + b 2 + c 2 = 1 a^{2}+b^{2}+c^{2}=1 . Find the value of the expression below:

( a + b + c ) 2 + ( a + b + c ) 2 + ( a b + c ) 2 + ( a + b c ) 2 (a+b+c)^{2}+(-a+b+c)^{2}+(a-b+c)^{2}+(a+b-c)^{2}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 21, 2019

X = ( a + b + c ) 2 + ( a + b + c ) 2 + ( a b + c ) 2 + ( a + b c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) + a 2 + b 2 + c 2 + 2 ( a b + b c c a ) + a 2 + b 2 + c 2 + 2 ( a b b c + c a ) + a 2 + b 2 + c 2 + 2 ( a b b c c a ) = 4 ( a 2 + b 2 + c 2 ) Since a 2 + b 2 + c 2 = 1 = 4 \begin{aligned} X = & \ (a+b+c)^2 + (-a+b+c)^2 + (a-b+c)^2 + (a+b-c)^2 \\ = & \ a^2 + b^2 + c^2 + 2(ab+bc+ca) + \\ & \ a^2 + b^2 + c^2 + 2(-ab+bc-ca) + \\ & \ a^2 + b^2 + c^2 + 2(-ab-bc+ca) + \\ & \ a^2 + b^2 + c^2 + 2(ab-bc-ca) \\ = & \ 4 ({\color{#3D99F6} a^2 + b^2 + c^2}) & \small \color{#3D99F6} \text{Since }a^2 + b^2 + c^2=1 \\ = & \ \boxed 4 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...