square numbers sequence

a c , a a b c , a a a b b c , a a a a b b b c , \overline{ac},\ \overline{aabc},\ \overline{aaabbc},\ \overline{aaaabbbc},\ \ldots

Find all triples of integers ( a , b , c ) (a,b,c) such that 0 < a , b , c < 10 0<a,b,c<10 and all of the terms in the above sequence are square numbers.

If those triples are ( a 1 , b 1 , c 1 ) , ( a 2 , b 2 , c 2 ) , , ( a n , b n , c n ) (a_1,b_1,c_1), (a_2,b_2,c_2), \ldots, (a_n,b_n,c_n) with a 1 a 2 a n , a_1 \leq a _2 \leq \cdots \leq a_n, write your answer as a 1 b 1 c 1 a 2 b 2 c 2 a n b n c n \overline{a_1 b_1 c_1 a_2 b_2 c_2 \ldots a_n b_n c_n} .


The answer is 156489.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Diego Perez
May 22, 2018

let N m = a a a m times b b b m-1 times c N_{m}= \underbrace{aa \cdots a}_{\text{m times}} \underbrace{bb \cdots b}_{\text{m-1 times}}c

Then, using that 11 1 y times = 1 0 y 1 9 \underbrace{11 \cdots 1}_{\text{y times}}= \frac{10^{y}-1}{9}

N m = a × 1 0 m × 1 0 m 1 9 + b × 10 × 1 0 m 1 1 9 + c N_{m}= a\times 10 ^{m} \times \frac{10^{m}-1}{9} + b\times 10\times \frac{10 ^{m-1}-1}{9} + c

If x = 1 0 m x=10 ^{m}

N m = x 2 x 9 × a + x 10 9 × b + c N_{m}=\frac{x^2-x}{9}\times a+ \frac{x-10}{9}\times b + c \\

We will assume that N m = u 2 N_{m}=u^2 with u u an integer \\

u 2 = x 2 x 9 × a + x 10 9 × b + c ( 3 u ) 2 = ( a ) x 2 + ( b a ) x + 9 c 10 b \begin{aligned} u^2=\frac{x^2-x}{9}\times a+ \frac{x-10}{9}\times b + c \\(3u)^2= (a)x^2+(b-a)x+9c-10b \end{aligned} \\

The above equation is cuadratic, and if it is a perfect square, then, the discriminant is equal to 0

( b a ) 2 4 ( a ) ( 9 c 10 b ) = 0 b 2 2 a b + a 2 36 a c + 40 a b = 0 b 2 + 2 a b + a 2 36 a c + 40 a b = 4 a b ( a + b ) 2 = 36 a c 36 a b ( a + b ) 2 = 36 a ( c b ) \begin{aligned} (b-a)^2 - 4(a)(9c-10b)=0 \\ b^2-2ab+a^2-36ac+40ab=0 \\ b^2+2ab+a^2-36ac+40ab=4ab \\ (a+b)^2=36ac-36ab \\ (a+b)^2= 36a(c-b) \end{aligned}

We get that

6 ( a + b ) , b < c 6 \vert {(a+b)} , b<c and a b a \vert b

Trying values for a a give us all the triplets: ( 1 , 5 , 9 ) (1,5,9) and ( 4 , 8 , 9 ) (4,8,9)

Giorgos K.
May 1, 2018

Just searched for cases ac,aabc using M a t h e m a t i c a Mathematica

Select[Tuples[Range@9,{3}],IntegerQ@Sqrt[FromDigits@{#,#3}&@@#]&&IntegerQ@Sqrt[FromDigits@{#,#,#2,#3}&@@#]&]

and got the right answer

{{1, 5, 6}, {4, 8, 9}}

How does this show that all the numbers in both the sequences { 16 , 1156 , 111556 , 11115556 , } \{ 16, 1156, 111556, 11115556, \ldots \} and { 49 , 4489 , 444889 , 44448889 , } \{ 49, 4489, 444889, 44448889, \ldots \} are perfect squares?

Pi Han Goh - 3 years, 1 month ago

Log in to reply

This is how I got the right answer. It is not a proof. When you are brute-forcing a problem like this with a computer you test as less test cases as you can. Did you solve it? Please share your thoughts on this problem

Giorgos K. - 3 years, 1 month ago

Log in to reply

No. I don't know how to prove that ( a , b , c ) = ( 1 , 5 , 6 ) , ( 4 , 8 , 9 ) (a,b,c) =(1,5,6), (4,8,9) must be true.

Pi Han Goh - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...