Square-Product-Square Sums

If ( a 2 + a b + b 2 ) ( c 2 + c d + d 2 ) = e 2 + e f + f 2 (a^2 + ab + b^2)(c^2 + cd + d^2) = e^2 + ef + f^2 , and e = m 1 a c + m 2 a d + m 3 b c + m 4 b d e = m_1ac + m_2ad + m_3bc + m_4bd and f = n 1 a c + n 2 a d + n 3 b c + n 4 b d f = n_1ac + n_2ad + n_3bc + n_4bd , find the number of integer solutions for ( m 1 , m 2 , m 3 , m 4 , n 1 , n 2 , n 3 , n 4 ) (m_1, m_2, m_3, m_4, n_1, n_2, n_3, n_4) .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Nov 10, 2018

Expanding ( a 2 + a b + b 2 ) ( c 2 + c d + d 2 ) (a^2 + ab + b^2)(c^2 + cd + d^2) gives a 2 c 2 + a 2 d 2 + b 2 c 2 + b 2 d 2 + a b c 2 + a 2 c d + b 2 c d + a b d 2 + a b c d a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + abc^2 + a^2cd + b^2cd + abd^2 + abcd .

Expanding e 2 + e f + f 2 e^2 + ef + f^2 gives ( m 1 2 + m 1 n 1 + n 1 2 ) a 2 c 2 (m_1^2 + m_1n_1 + n_1^2)a^2c^2 + + ( m 2 2 + m 2 n 2 + n 2 2 ) a 2 d 2 (m_2^2 + m_2n_2 + n_2^2)a^2d^2 + + ( m 3 2 + m 3 n 3 + n 3 2 ) b 2 c 2 (m_3^2 + m_3n_3 + n_3^2)b^2c^2 + + ( m 4 2 + m 4 n 4 + n 4 2 ) b 2 d 2 (m_4^2 + m_4n_4 + n_4^2)b^2d^2 + + ( 2 m 1 m 3 + m 3 n 1 + m 1 n 3 + 2 n 1 n 3 ) a b c 2 (2m_1m_3 + m_3n_1 + m_1n_3 + 2n_1n_3)abc^2 + + ( 2 m 1 m 2 + m 2 n 1 + m 1 n 2 + 2 n 1 n 2 ) a 2 c d (2m_1m_2 + m_2n_1 + m_1n_2 + 2n_1n_2)a^2cd + + ( 2 m 3 m 4 + m 3 n 4 + m 4 n 3 + 2 n 3 n 4 ) b 2 c d (2m_3m_4 + m_3n_4 + m_4n_3 + 2n_3n_4)b^2cd + + ( 2 m 2 m 4 + m 2 n 4 + m 4 n 2 + 2 n 2 n 4 ) a b d 2 (2m_2m_4 + m_2n_4 + m_4n_2 + 2n_2n_4)abd^2 + + ( 2 m 1 m 4 + 2 m 2 m 3 + m 1 n 4 + m 2 n 3 + m 3 n 2 + m 4 n 1 + 2 n 1 n 4 + 2 n 2 n 3 ) a b c d (2m_1m_4 + 2m_2m_3 + m_1n_4 + m_2n_3 + m_3n_2 + m_4n_1 + 2n_1n_4 + 2n_2n_3)abcd

For the a 2 c 2 a^2c^2 term we have 1 = m 1 2 + m 1 n 1 + n 1 2 1 = m_1^2 + m_1n_1 + n_1^2

For the a 2 d 2 a^2d^2 term we have 1 = m 2 2 + m 2 n 2 + n 2 2 1 = m_2^2 + m_2n_2 + n_2^2

For the b 2 c 2 b^2c^2 term we have 1 = m 3 2 + m 3 n 3 + n 3 2 1 = m_3^2 + m_3n_3 + n_3^2

For the b 2 d 2 b^2d^2 term we have 1 = m 4 2 + m 4 n 4 + n 4 2 1 = m_4^2 + m_4n_4 + n_4^2

For the a b c 2 abc^2 term we have 1 = 2 m 1 m 3 + m 3 n 1 + m 1 n 3 + 2 n 1 n 3 1 = 2m_1m_3 + m_3n_1 + m_1n_3 + 2n_1n_3

For the a 2 c d a^2cd term we have 1 = 2 m 1 m 2 + m 2 n 1 + m 1 n 2 + 2 n 1 n 2 1 = 2m_1m_2 + m_2n_1 + m_1n_2 + 2n_1n_2

For the b 2 c d b^2cd term we have 1 = 2 m 3 m 4 + m 3 n 4 + m 4 n 3 + 2 n 3 n 4 1 = 2m_3m_4 + m_3n_4 + m_4n_3 + 2n_3n_4

For the a b d 2 abd^2 term we have 1 = 2 m 2 m 4 + m 2 n 4 + m 4 n 2 + 2 n 2 n 4 1 = 2m_2m_4 + m_2n_4 + m_4n_2 + 2n_2n_4

For the a b c d abcd term we have 1 = 2 m 1 m 4 + 2 m 2 m 3 + m 1 n 4 + m 2 n 3 + m 3 n 2 + m 4 n 1 + 2 n 1 n 4 + 2 n 2 n 3 1 = 2m_1m_4 + 2m_2m_3 + m_1n_4 + m_2n_3 + m_3n_2 + m_4n_1 + 2n_1n_4 + 2n_2n_3

For x 2 + x y + y 2 = 1 x^2 + xy + y^2 = 1 to have real solutions, its discriminant (in terms of x x ) 1 4 ( y 2 1 ) > 0 1 - 4(y^2 - 1) > 0 solves to y 2 < 5 4 y^2 < \frac{5}{4} . If y y is an integer, it is limited to y = ± 1 y = \pm 1 or y = 0 y = 0 . Likewise by symmetry, if x x is an integer, it is limited to x = ± 1 x = \pm 1 or x = 0 x = 0 . Since from above we know that 1 = m 1 2 + m 1 n 1 + n 1 2 1 = m_1^2 + m_1n_1 + n_1^2 , 1 = m 2 2 + m 2 n 2 + n 2 2 1 = m_2^2 + m_2n_2 + n_2^2 , 1 = m 3 2 + m 3 n 3 + n 3 2 1 = m_3^2 + m_3n_3 + n_3^2 , and 1 = m 4 2 + m 4 n 4 + n 4 2 1 = m_4^2 + m_4n_4 + n_4^2 , we know that all m m and n n are in the same form as x x and y y and their values must also be limited to ± 1 \pm 1 or 0 0 .

With these limiting values of m m and n n and a little bit of algebraic effort with the above equations, we find the following integer solutions for ( m 1 , m 2 , m 3 , m 4 , n 1 , n 2 , n 3 , n 4 ) (m_1, m_2, m_3, m_4, n_1, n_2, n_3, n_4) :

( 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 ) (-1, -1, -1, 0, 0, 1, 1, 1) , ( 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 ) (-1, -1, -1, 0, 1, 0, 0, -1) , ( 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 ) (-1, -1, 0, -1, 0, 1, -1, 0) , ( 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 ) (-1, -1, 0, -1, 1, 0, 1, 1) ,

( 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 ) (-1, 0, -1, -1, 0, -1, 1, 0) , ( 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 ) (-1, 0, -1, -1, 1, 1, 0, 1) , ( 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 ) (-1, 0, 0, 1, 0, -1, -1, -1) , ( 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 ) (-1, 0, 0, 1, 1, 1, 1, 0) ,

( 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 ) (0, -1, -1, -1, -1, 0, 0, 1) , ( 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 ) (0, -1, -1, -1, 1, 1, 1, 0) , ( 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 ) (0, -1, 1, 0, -1, 0, -1, -1) , ( 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 ) (0, -1, 1, 0, 1, 1, 0, 1) ,

( 0 , 1 , 1 , 0 , 1 , 1 , 0 , 1 ) (0, 1, -1, 0, -1, -1, 0, -1) , ( 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 ) (0, 1, -1, 0, 1, 0, 1, 1) , ( 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 ) (0, 1, 1, 1, -1, -1, -1, 0) , ( 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 ) (0, 1, 1, 1, 1, 0, 0, -1) ,

( 1 , 0 , 0 , 1 , 1 , 1 , 1 , 0 ) (1, 0, 0, -1, -1, -1, -1, 0) , ( 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 ) (1, 0, 0, -1, 0, 1, 1, 1) , ( 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 ) (1, 0, 1, 1, -1, -1, 0, -1) , ( 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 ) (1, 0, 1, 1, 0, 1, -1, 0) ,

( 1 , 1 , 0 , 1 , 1 , 0 , 1 , 1 ) (1, 1, 0, 1, -1, 0, -1, -1) , ( 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 ) (1, 1, 0, 1, 0, -1, 1, 0) , ( 1 , 1 , 1 , 0 , 1 , 0 , 0 , 1 ) (1, 1, 1, 0, -1, 0, 0, 1) , ( 1 , 1 , 1 , 0 , 0 , 1 , 1 , 1 ) (1, 1, 1, 0, 0, -1, -1, -1)

for a total of 24 \boxed{24} solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...