Square Pyramids 2!

Geometry Level pending

The angles λ \lambda (the slant height angle), γ \gamma (the base edge angle) and θ \theta (the angle made between two adjacent faces) minimize the total surface area of the above square pyramid when the volume is held constant.

Find tan 2 ( λ ) tan ( γ ) cos ( θ ) \dfrac{\tan^2(\lambda)\tan(\gamma)}{\cos(\theta)} .


The answer is -144.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 27, 2020

s = 4 H 2 + x 2 2 s = \dfrac{\sqrt{4H^2 + x^2}}{2} \implies the surface area A = 2 x s + x 2 = x 4 H 2 + x 2 + x 2 A = 2xs + x^2 = x\sqrt{4H^2 + x^2} + x^2

The volume V = 1 3 x 2 H = K H = 3 K x 2 V = \dfrac{1}{3}x^2H = K \implies H = \dfrac{3K}{x^2} \implies A = 36 K 2 + x 6 x + x 2 A = \dfrac{\sqrt{36K^2 + x^6}}{x} + x^2 \implies

d A d x = 2 x 6 36 k 2 x 2 36 k 2 + x 6 + 2 x = 0 \dfrac{dA}{dx} = \dfrac{2x^6 - 36k^2}{x^2\sqrt{36k^2 + x^6}} + 2x = 0 \implies 2 x = 36 k 2 2 x 2 x 2 36 k 2 + x 6 2x = \dfrac{36k^2 - 2x^2}{x^2\sqrt{36k^2 + x^6}} \implies

2 x 3 36 k 2 + x 6 = 36 k 2 2 x 6 2x^3\sqrt{36k^2 + x^6} = 36k^2 - 2x^6 \implies

144 k 2 x 6 + 4 x 12 = 3 6 2 k 4 144 k 2 x 6 + 4 x 12 144k^2x^6 + 4x^{12} = 36^2k^4 - 144k^2x^6 + 4x^{12} \implies 288 k 2 x 6 3 6 2 k 4 288 k^2 x^6 - 36^2 k^4 \implies

x 6 = 3 6 2 k 2 36 8 = 9 2 k 2 x^6 = \dfrac{36^2 k^2}{36 * 8} = \dfrac{9}{2}k^2 \implies x = 3 1 3 k 1 3 2 1 6 x = \dfrac{3^{\frac{1}{3}} k^{\frac{1}{3}}}{2^{\frac{1}{6}}} H = ( 6 k ) 1 3 = 3 1 3 2 1 3 k 1 3 \implies H = (6k)^{\frac{1}{3}} = 3^{\frac{1}{3}} 2^{\frac{1}{3}} k^{\frac{1}{3}}

tan ( λ ) = 2 H x = 2 2 \implies \boxed{\tan(\lambda) = \dfrac{2H}{x} = 2\sqrt{2}} and tan ( γ ) = 2 \boxed{\tan(\gamma) = 2} .

O P = x i + 0 j + 0 k \vec{OP} = x\vec{i} + 0\vec{j} + 0\vec{k}

O R = 0 i x j + 0 k \vec{OR} = 0\vec{i} - x\vec{j} + 0\vec{k}

O S = x 2 i x 2 j + H k \vec{OS} = \dfrac{x}{2}\vec{i} -\dfrac{x}{2}\vec{j} + H\vec{k}

U = O P X O S = 0 i x H j x 2 2 k \vec{U} = \vec{OP} \:\ X \:\ \vec{OS} = 0\vec{i} - xH\vec{j} - \dfrac{x^2}{2}\vec{k}

and

V = O R X O S = x H i + 0 j + x 2 2 k \vec{V} = \vec{OR} \:\ X \:\ \vec{OS} = -xH\vec{i} + 0\vec{j} + \dfrac{x^2}{2}\vec{k}

U V = x 4 4 \vec{U} \circ \vec{V} = -\dfrac{x^4}{4}

U = x 2 4 H 2 + x 2 = V |\vec{U}| = \dfrac{x}{2}\sqrt{4H^2 + x^2} = |\vec{V}|

cos ( θ ) = U V U V = x 2 4 H 2 + x 2 = 1 9 \implies \boxed{\cos(\theta) = \dfrac{\vec{U} \circ \vec{V}}{|\vec{U}| |\vec{V}|} = -\dfrac{x^2}{4H^2 + x^2} = -\dfrac{1}{9}}

tan 2 ( λ ) tan ( γ ) cos ( θ ) = 144 \implies \dfrac{\tan^2(\lambda)\tan(\gamma)}{\cos(\theta)} = \boxed{-144} .

Note: d 2 A d x 2 x = ( 9 2 k 2 ) 1 6 = 32 3 > 0 \dfrac{d^2A}{dx^2}|_{x = (\dfrac{9}{2} k^2)^{\frac{1}{6}}} = \dfrac{32}{3} > 0 \implies min occurs at x = ( 9 2 k 2 ) 1 6 x = (\dfrac{9}{2} k^2)^{\frac{1}{6}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...