Square Pyramids!

Geometry Level 4

The angles λ \lambda (the slant height angle), γ \gamma (the base edge angle) and θ \theta (the angle made between two adjacent faces) minimize the lateral surface area of the above square pyramid when the volume is held constant.

Find tan 2 ( λ ) tan ( γ ) cos ( θ ) \dfrac{\tan^2(\lambda)\tan(\gamma)}{\cos(\theta)} .


The answer is -6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 25, 2020

s = 4 H 2 + x 2 2 s = \dfrac{\sqrt{4H^2 + x^2}}{2} \implies the surface area A = 2 x s = x 4 H 2 + x 2 A = 2xs = x\sqrt{4H^2 + x^2}

The volume V = 1 3 x 2 H = K H = 3 K x 2 V = \dfrac{1}{3}x^2H = K \implies H = \dfrac{3K}{x^2} \implies A = 36 K 2 + x 6 x A = \dfrac{\sqrt{36K^2 + x^6}}{x} \implies

d A d x = 2 x 6 36 k 2 x 2 36 k 2 + x 6 = 0 x 0 \dfrac{dA}{dx} = \dfrac{2x^6 - 36k^2}{x^2\sqrt{36k^2 + x^6}} = 0 \:\ x \neq 0 \implies x 6 18 k 2 = 0 x^6 - 18k^2 = 0 \implies

x = ( 18 K 2 ) 1 6 = 3 1 3 2 1 6 k 1 3 x = (18K^2)^{\frac{1}{6}} = 3^{\frac{1}{3}} 2^{\frac{1}{6}} k^{\frac{1}{3}} H = ( 3 2 ) 1 3 K 1 3 \implies H = (\dfrac{3}{2})^{\frac{1}{3}} K^{\frac{1}{3}}

tan ( λ ) = 2 H x = 2 \implies \boxed{\tan(\lambda) = \dfrac{2H}{x} = \sqrt{2}} and tan ( γ ) = 1 \boxed{\tan(\gamma) = 1} .

O P = x i + 0 j + 0 k \vec{OP} = x\vec{i} + 0\vec{j} + 0\vec{k}

O R = 0 i x j + 0 k \vec{OR} = 0\vec{i} - x\vec{j} + 0\vec{k}

O S = x 2 i x 2 j + H k \vec{OS} = \dfrac{x}{2}\vec{i} -\dfrac{x}{2}\vec{j} + H\vec{k}

U = O P X O S = 0 i x H j x 2 2 k \vec{U} = \vec{OP} \:\ X \:\ \vec{OS} = 0\vec{i} - xH\vec{j} - \dfrac{x^2}{2}\vec{k}

and

V = O R X O S = x H i + 0 j + x 2 2 k \vec{V} = \vec{OR} \:\ X \:\ \vec{OS} = -xH\vec{i} + 0\vec{j} + \dfrac{x^2}{2}\vec{k}

U V = x 4 4 \vec{U} \circ \vec{V} = -\dfrac{x^4}{4}

U = x 2 4 H 2 + x 2 = V |\vec{U}| = \dfrac{x}{2}\sqrt{4H^2 + x^2} = |\vec{V}|

cos ( θ ) = U V U V = x 2 4 H 2 + x 2 = 1 3 \implies \boxed{\cos(\theta) = \dfrac{\vec{U} \circ \vec{V}}{|\vec{U}| |\vec{V}|} = -\dfrac{x^2}{4H^2 + x^2} = -\dfrac{1}{3}}

tan 2 ( λ ) tan ( γ ) cos ( θ ) = 6 \implies \dfrac{\tan^2(\lambda)\tan(\gamma)}{\cos(\theta)} = \boxed{-6} .

Note: d 2 A d x 2 x = ( 18 k 2 ) 1 6 = 4 3 > 0 \dfrac{d^2A}{dx^2}|_{x = (18 k^2)^{\frac{1}{6}}} = 4\sqrt{3} > 0 \implies min occurs at x = ( 18 k 2 ) 1 6 x = (18 k^2)^{\frac{1}{6}}

Total surface area must include the area of the base also. This has not been taken into consideration.

A Former Brilliant Member - 1 year, 3 months ago

Log in to reply

Sorry. It should have been Lateral Surface Area. I added Lateral Surface Area above. I thought I put lateral surface area. I'm sorry for that.

I did a second problem using total surface area.

Rocco Dalto - 1 year, 3 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...