Square Root

Algebra Level 2

6 3 2 3 + 1 = ? \large \frac { 6 }{ \sqrt { 3 } } \quad -\quad \frac { 2 }{ \sqrt { 3 } \quad +\quad 1 } =\, ?

2 3 + 1 2\sqrt { 3\quad } +1 3 1 \sqrt { 3 } -1 3 \sqrt { 3 } 3 + 1 \sqrt { 3 } +1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mateus Gomes
Feb 8, 2016

6 3 2 3 + 1 = 6 ( 3 + 1 ) 2 ( 3 ) ( 3 ) ( 3 + 1 ) = 4 3 + 6 ( 3 ) ( 3 + 1 ) = ( 3 ) ( 4 + 2 3 ) ( 3 ) ( 3 + 1 ) = ( 4 + 2 3 ) ( 3 + 1 ) = ( 3 + 1 ) 2 ( 3 + 1 ) = ( 3 + 1 ) \Large \frac { 6 }{ \sqrt { 3 } } \quad -\quad \frac { 2 }{ \sqrt { 3 } \quad +\quad 1 } =\frac{6(\sqrt3+1)-2(\sqrt3)}{(\sqrt3)(\sqrt3+1)}=\frac{4\sqrt3+6}{(\sqrt3)(\sqrt3+1)}=\frac{(\sqrt3)(4+2\sqrt3)}{(\sqrt3)(\sqrt3+1)}=\frac{(4+2\sqrt3)}{(\sqrt3+1)}=\frac{(\sqrt3+1)^2}{(\sqrt3+1)}=\Large\color{#3D99F6}{\boxed{(\sqrt3+1)}}

Kay Xspre
Feb 9, 2016

Simplify 6 3 = 2 3 \displaystyle \frac{6}{\sqrt{3}} = 2\sqrt{3} and 2 3 + 1 = 2 ( 3 1 ) ( 3 ) 2 1 2 = 3 1 \displaystyle \frac{2}{\sqrt{3}+1} = \frac{2(\sqrt{3}-1)}{(\sqrt{3})^2-1^2} = \sqrt{3}-1 , therefore the solution is 3 + 1 \sqrt{3}+1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...