You May Need Calculus

Calculus Level pending

Find 27.2 3 \sqrt[3]{27.2} and round the answer to 3 decimal places.

Note: To solve this answer, you may have to use a calculator, but try not to use to explicitly find the answer.


The answer is 3.007.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let 27.2 3 = 3 + δ \sqrt[3]{27.2} = 3+\delta . Then, we have:

( 3 + δ ) 3 = 27.2 27 + 27 δ + 9 δ 2 + δ 3 = 27.2 27 δ + 9 δ 2 + δ 3 = 0.2 Since δ is small 27 δ 0.2 First approximation δ 1 0.0074 9 δ 2 + 27 δ 0.2 Second approximation 9 δ 2 2 + 27 δ 2 0.2 = 0 δ 2 0.0074 \begin{aligned} (3+\delta)^3 & = 27.2 \\ 27+27\delta+9\delta^2 + \delta^3 & = 27.2 \\ 27\delta+9\delta^2 + \delta^3 & = 0.2 & \small \color{#3D99F6} \text{Since }\delta \text{ is small} \\ 27 \delta & \approx 0.2 & \small \color{#3D99F6} \text{First approximation} \\ \implies \delta_1 & \approx 0.0074 \\ 9\delta^2 + 27 \delta & \approx 0.2 & \small \color{#3D99F6} \text{Second approximation} \\ 9\delta_2^2 + 27 \delta_2 - 0.2 & = 0 \\ \implies \delta_2 & \approx 0.0074 \end{aligned}

27.2 3 3.007 \implies \sqrt[3]{27.2} \approx \boxed{3.007}

Jack Ceroni
Mar 8, 2017

To solve this, I have found that a very good method to approximate the root of equations is to use a Taylor series, since we can convert the function into a polynomial, which we can evaluate in an easier fashion:

We can first define a Taylor series as:

g ( x ) = n = 0 f ( n ) ( x 0 ) ( x x 0 ) n n ! g(x) \ = \ \displaystyle\sum_{n=0}^{\infty} \ f^{(n)}(x_0) \ \dfrac{(x \ - \ x_0)^n}{n!}

Where for a finite number of terms:

g ( x ) f ( x ) g(x) \ \approx \ f(x)

We can then see to solve this problem, we can set f ( x ) = x 3 f(x) \ = \ \sqrt[3]{x} . Next, we can start to solve this. We can probably solve 3 3 terms in this Taylor series to get an approximation to 3 3 decimal places, so we must do that. We can evaluate the these terms term as n = 0 , 1 , 2 n \ = \ 0, 1, 2 . We have:

g ( x ) = n = 0 f ( n ) ( x 0 ) ( x x 0 ) n n ! g(x) \ = \ \displaystyle\sum_{n=0}^{\infty} \ f^{(n)}(x_0) \ \dfrac{(x \ - \ x_0)^n}{n!}

So we can substitute in our values. We can also centre this function at 27 27 , since it is the closest perfect cubic root, therefore x 0 = 27 x_0 \ = \ 27 . We have:

g ( x ) = f ( 0 ) ( x 0 ) ( x x 0 ) 0 0 ! + f ( 1 ) ( x 0 ) ( x x 0 ) 1 1 ! + f ( 2 ) ( x 0 ) ( x x 0 ) 2 2 ! g(x) \ = f^{(0)}(x_0) \ \dfrac{(x \ - \ x_0)^0}{0!} \ + \ f^{(1)}(x_0) \ \dfrac{(x \ - \ x_0)^1}{1!} \ + \ f^{(2)}(x_0) \ \dfrac{(x \ - \ x_0)^2}{2!}

We can then simplify. For all of the f n f^n s, I am taking the derivative, specified by what n n is equal to.

g ( x ) = 3 + 1 3 x 0 2 3 ( x x 0 ) 2 9 x 0 5 3 ( x x 0 ) 2 2 g(x) \ = 3 \ + \ \dfrac{1}{3x_0^{\frac{2}{3}}} \ (x \ - \ x_0) \ - \ \dfrac{2}{9x_0^{\frac{5}{3}}} \ \dfrac{(x \ - \ x_0)^2}{2}

We can then substitute in 27 27 for all of the x 0 x_0 values in the equation:

g ( x ) = 3 + 1 3 ( 27 ) 2 3 ( x 27 ) 2 9 ( 27 ) 5 3 ( x 27 ) 2 2 g(x) \ = 3 \ + \ \dfrac{1}{3(27)^{\frac{2}{3}}} \ (x \ - \ 27) \ - \ \dfrac{2}{9(27)^{\frac{5}{3}}} \ \dfrac{(x \ - \ 27)^2}{2}

We can then evaluate:

g ( x ) = 3 + 1 27 ( x 27 ) 2 2187 ( x 27 ) 2 2 g(x) \ = 3 \ + \ \dfrac{1}{27} \ (x \ - \ 27) \ - \ \dfrac{2}{2187} \ \dfrac{(x \ - \ 27)^2}{2}

We can then substitute in 27.2 27.2 for all of the x x values in the equation:

g ( x ) = 3 + 1 27 ( 27.2 27 ) 2 2187 ( 27.2 27 ) 2 2 g(x) \ = 3 \ + \ \dfrac{1}{27} \ (27.2 \ - \ 27) \ - \ \dfrac{2}{2187} \ \dfrac{(27.2 \ - \ 27)^2}{2}

g ( x ) = 3 + 1 27 ( 0.2 ) 2 2187 ( 0.2 ) 2 2 g(x) \ = 3 \ + \ \dfrac{1}{27} \ (0.2) \ - \ \dfrac{2}{2187} \ \dfrac{(0.2)^2}{2}

We know that 0.2 = 1 5 0.2 \ = \ \dfrac{1}{5} , so:

g ( x ) = 3 + 1 27 ( 1 5 ) 2 2187 ( 1 5 ) 2 2 g(x) \ = 3 \ + \ \dfrac{1}{27} \ (\frac{1}{5}) \ - \ \dfrac{2}{2187} \ \dfrac{(\frac{1}{5})^2}{2}

Then:

g ( x ) = 3 + 1 27 ( 1 5 ) 2 2187 1 50 g(x) \ = 3 \ + \ \dfrac{1}{27} \ (\frac{1}{5}) \ - \ \dfrac{2}{2187} \ \dfrac{1}{50}

g ( x ) = 3 + 1 135 2 109350 g(x) \ = 3 \ + \ \dfrac{1}{135} \ - \ \dfrac{2}{109350}

Finally, we can get that:

g ( x ) 3.007 g(x) \ \approx \ 3.007

Therefore:

27.2 3 3.007 \sqrt[3]{27.2} \ \approx \ \boxed{3.007}

f ( x ) = lim h 0 f ( x + h ) f ( x ) h f'(x)=\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

If f ( x ) = x 3 f(x)=\sqrt[3]{x} , x = 27 x=27 and h = 0.2 h=0.2 , we can find approximate value of 27.2 3 \sqrt[3]{27.2}

f ( x ) = 1 3 x 2 3 f'(x)=\frac{1}{3x^\frac{2}{3}}

Thus, 1 3 9 = f ( x + h ) 3 0.2 \frac{1}{3*9}=\frac{f(x+h)-3}{0.2}

1 3 9 5 = f ( x + h ) 3 \frac{1}{3*9*5}=f(x+h)-3

1 135 = f ( x + h ) 3 \frac{1}{135}=f(x+h)-3

f ( x + h ) = 3 + 0.0074 f(x+h)=3+0.0074

f ( x + h ) 3.007 f(x+h) \approx 3.007

LOL! 3.074 3.007 3.074 \approx 3.007

Viki Zeta - 4 years, 3 months ago
Viki Zeta
Mar 9, 2017

Let the equation be, y = x 3 = x 1 3 y = 1 3 x 2 3 = x 2 3 3 Let’s try to approximate the answer using known cubes, 3 3 = 27 So, the slope is x = 27 1 3 × 2 7 2 3 = 1 27 Therefore, we get a linear approximation y = 3 + 1 27 ( x 27 ) y = 3 + x 27 1 y = 2 + x 27 Now, for x = 27.2 y = 2 + 27.2 27 = 2 + 27 + 0.2 27 = 3 + 2 270 y 3.0074074074 3.007 \text{Let the equation be, }y = \sqrt[3]{x} = x^{\dfrac{1}{3}} \\ y' = \dfrac{1}{3}\sqrt[3]{x^{-2}} = \dfrac{x^{-\dfrac{2}{3}}}{3} \\ \text{Let's try to approximate the answer using known cubes, } 3^3 = 27 \\ \text{So, the slope is} \\ x = 27 \implies \dfrac{1}{3} \times 27^{-\dfrac{2}{3}} \\ = \dfrac{1}{27} \\ \text{Therefore, we get a linear approximation} \\ y = 3 + \dfrac{1}{27} \left(x - 27\right)\\ y = 3 + \dfrac{x}{27} - 1 \\ y = 2 + \dfrac{x}{27} \\ \text{Now, for x = 27.2} \\ y = 2 + \dfrac{27.2}{27} = 2 + \dfrac{27 + 0.2}{27} \\ = 3 + \dfrac{2}{270} \\ \boxed{y \approx 3.0074074074 \approx 3.007}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...