Square root and Square - Brothers!

Algebra Level 2

Given that:

( x + x 2 + 1 ) ( y + y 2 + 1 ) = 1 \left( x+\sqrt { { x }^{ 2 }+1 } \right) \left( y+\sqrt { { y }^{ 2 }+1 } \right) =1

Calculate: x + y x+y


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Dang Anh Tu
Jul 11, 2014

Nice try, but please prove this problem!

We have:

( x 2 + 1 + x ) ( x 2 + 1 x ) = 1 \left( \sqrt { { x }^{ 2 }+1 } +x \right) \left( \sqrt { { x }^{ 2 }+1 } -x \right)=1

( y 2 + 1 + y ) ( y 2 + 1 y ) = 1 \left( \sqrt { { y }^{ 2 }+1 } +y \right) \left( \sqrt { { y }^{ 2 }+1 } -y \right)=1

So:

x 2 + 1 + x = y 2 + 1 y \sqrt { { x }^{ 2 }+1 } +x=\sqrt { { y }^{ 2 }+1 } -y ( ) (*)

y 2 + 1 + y = x 2 + 1 x \sqrt { { y }^{ 2 }+1 } +y=\sqrt { { x }^{ 2 }+1 } -x ( ) (**)

Calculate 2 2 sides of 2 2 equations ( ) (*) and ( ) (**) , erase all common terms, we have:

x + y x+y = x y -x-y

2 x + 2 y = 0 \Leftrightarrow 2x+2y=0

x + y = 0 \Leftrightarrow x+y=0

Hence, x + y = 0 x+y=0

I used my instinct .........:) heehhee

ashutosh mahapatra - 6 years, 11 months ago
Dieuler Oliveira
Aug 6, 2014

Supposing x x and y y reals, we can make the following substitution: x = tan α , y = tan β ; α , β [ 0 , π 2 ) x=\tan{\alpha}, y=\tan{\beta}; \alpha, \beta \in \left[0,\frac{\pi}{2}\right) ( tan α + tan α 2 + 1 ) ( tan β + tan β 2 + 1 ) = 1 \left(\tan{\alpha}+\sqrt{\tan{\alpha}^{2}+1}\right)\left(\tan{\beta}+\sqrt{\tan{\beta}^{2}+1}\right)=1 ( tan α + sec α ) ( tan β + sec β ) = 1 (\tan{\alpha}+\sec{\alpha})(\tan{\beta}+\sec{\beta})=1 tan α tan β + tan α sec β + sec α sec β + sec α sec β = 1 \tan{\alpha}\tan{\beta}+\tan{\alpha}\sec{\beta}+\sec{\alpha}\sec{\beta}+\sec{\alpha}\sec{\beta}=1 sin α sin β + sin α + sin β + 1 = c o s α cos β \sin{\alpha}\sin{\beta}+\sin{\alpha}+\sin{\beta}+1=cos{\alpha}\cos{\beta} cos ( α + β ) = 2 sin α + β 2 cos α β 2 + 1 \cos(\alpha + \beta)=2\sin{\frac{\alpha + \beta}{2}}\cos{\frac{\alpha - \beta}{2}}+1 sin 2 α + β 2 = sin α + β 2 cos α β 2 \sin^{2}{\frac{\alpha + \beta}{2}}=-\sin{\frac{\alpha + \beta}{2}}\cos{\frac{\alpha - \beta}{2}} i) sin ( α + β 2 ) = sin ( π α + β 2 ) \sin\left({- \frac{\alpha+\beta}{2}}\right)=\sin\left({- \frac{\pi - \alpha + \beta}{2}}\right) α = π 2 + 2 k π \Rightarrow \alpha=\frac{-\pi}{2}+2k\pi or β = π 2 + 2 k π \beta=\frac{-\pi}{2}+2k\pi (Out of the domain!) ii) sin α + β 2 = 0 α + β = 2 k π \sin{\frac{\alpha+\beta}{2}}=0 \Rightarrow \alpha+\beta=2k\pi Therefore: x + y = tan α + tan β = tan α + tan ( 2 k π α ) = t a n α t a n α = 0 . x+y=\tan\alpha+\tan\beta=\tan\alpha+\tan(2k\pi-\alpha)=tan\alpha - tan\alpha =\boxed{0}.

Laura Gao
Dec 12, 2017

Multiply the equation out to get x y + x y 2 + 1 + y x 2 + 1 + ( y 2 + 1 ) ( x 2 + 1 ) = 1 xy+x\sqrt{ y^2+1}+y \sqrt{x^2+1}+ \sqrt{(y^2+1)(x^2+1)}=1

Square both sides to get x 2 y 2 + x 2 ( y 2 + 1 ) + y 2 ( x 2 + 1 ) + ( x 2 + 1 ) ( y 2 + 1 ) = 1 x^2y^2+x^2(y^2+1)+y^2(x^2+1)+(x^2+1)(y^2+1)=1

Simplify to get 4 x 2 y 2 + 2 x 2 + 2 y 2 + 1 = 1 4x^2y^2+2x^2+2y^2+1=1

Subtract 1 from both sides to get 4 x 2 y 2 + 2 x 2 + 2 y 2 = 0 4x^2y^2+2x^2+2y^2 = 0

The only way for this equation to be true is if x 2 = y 2 = 0 x^2=y^2=0 and only 0 2 = 0 0^2=0

So since x = y = 0 x=y=0 the solution is 0 + 0 = 0 0+0=**0**

That is not how we square both sides.

Jerry McKenzie - 3 years, 4 months ago

There are only 2 possible solution of (x,y) namely x=y or x≠y we assume the solution is x=y,so (x+√(x^2 +1))(x+√(x^2+1))=1 (x+√(x^2 +1))^2=1 √(x^2 +1)=1-x Then we get the equation is x^2+1=x^2+1-2x So we can getting x=0 So the solution is x=y=0

X+Y=0

x=0; y=0; just check it out!

looooooooooooooool

math man - 6 years, 10 months ago

lol it works

Laura Gao - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...