Square-Root Equation

Algebra Level 3

1 x 2 + 2 x + 2 + 1 3 x 2 2 x + 1 = 1 2 x 2 + x + 2 + 1 2 x 2 x + 1 \dfrac{1}{\sqrt{x^{2}+2x+2}} + \dfrac{1}{\sqrt{3x^{2}-2x+1}} = \dfrac{1}{\sqrt{2x^{2}+x+2}} + \dfrac{1}{\sqrt{2x^{2}-x+1}}

The equation above has four real roots:

  • two integer roots m m and n n , where m < n m < n
  • two irrational roots of the form a ± b c \dfrac{a \pm \sqrt{b}}{c} , where a a and c c are coprime positive integers, and b b is a square-free integer.

Find m + n + a + b + c m+n+a+b+c .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 13, 2018

1 x 2 + 2 x + 2 + 1 3 x 2 2 x + 1 = 1 2 x 2 + x + 2 + 1 2 x 2 x + 1 1 x 2 + 2 x + 2 + 1 2 x 2 x + 1 + x 2 x = 1 x 2 + 2 x + 2 + x 2 x + 1 2 x 2 x + 1 \begin{aligned} \frac 1{\sqrt{x^2+2x+2}} + \frac 1{\sqrt{3x^2-2x+1}} & = \frac 1{\sqrt{2x^2+x+2}} + \frac 1{\sqrt{2x^2-x+1}} \\ \frac 1{\sqrt{x^2+2x+2}} + \frac 1{\sqrt{2x^2-x+1+\color{#D61F06}x^2-x}} & = \frac 1{\sqrt{x^2+2x+2 +\color{#D61F06} x^2-x}} + \frac 1{\sqrt{2x^2-x+1}} \end{aligned}

We note that if x 2 x = 0 \color{#D61F06}x^2 - x =0 , then L H S = R H S LHS = RHS . Therefore, x = 0 x=0 and x = 1 x=1 are the integer roots of the equation, since x 2 + 2 x + 2 0 x^2+2x+2 \ne 0 and 2 x 2 x + 1 0 2x^2 -x+1\ne 0 when x = 0 , 1 x=0, 1 .

We also note that L H S = R H S LHS=RHS when x 2 + 2 x + 2 = 2 x 2 x + 1 x^2+2x+2 = 2x^2 -x+1 . Then x 2 3 x 1 = 0 x^2 - 3x - 1 =0 . Solving the quadratic equation we have x = 3 ± 13 2 x = \dfrac {3\pm \sqrt{13}}2 .

Therefore, m + n + a + b + c = 0 + 1 + 3 + 13 + 2 = 19 m+n+a+b+c = 0+1+3+13+2 = \boxed{19} .

Hugh Sir
Nov 13, 2018

Let P = x 2 + 2 x + 2 P = \sqrt{x^{2}+2x+2} ,

Q = 3 x 2 2 x + 1 Q = \sqrt{3x^{2}-2x+1} ,

R = 2 x 2 + x + 2 R = \sqrt{2x^{2}+x+2} ,

S = 2 x 2 x + 1 S = \sqrt{2x^{2}-x+1} .

Note that P 2 + Q 2 = R 2 + S 2 P^{2}+Q^{2} = R^{2}+S^{2} .

The equation is 1 P + 1 Q = 1 R + 1 S \dfrac{1}{P}+\dfrac{1}{Q} = \dfrac{1}{R}+\dfrac{1}{S} .

( P + Q ) 2 P 2 Q 2 = ( R + S ) 2 R 2 S 2 \dfrac{(P+Q)^{2}}{P^{2}Q^{2}} = \dfrac{(R+S)^{2}}{R^{2}S^{2}}

( P 2 + Q 2 + 2 P Q ) ( R 2 S 2 ) = ( R 2 + S 2 + 2 R S ) ( P 2 Q 2 ) (P^{2}+Q^{2}+2PQ)(R^{2}S^{2}) = (R^{2}+S^{2}+2RS)(P^{2}Q^{2})

( P 2 + Q 2 + 2 P Q ) ( R 2 S 2 ) = ( P 2 + Q 2 + 2 R S ) ( P 2 Q 2 ) (P^{2}+Q^{2}+2PQ)(R^{2}S^{2}) = (P^{2}+Q^{2}+2RS)(P^{2}Q^{2})

( P 2 + Q 2 ) ( R 2 S 2 P 2 Q 2 ) + 2 P Q R S ( R S P Q ) = 0 (P^{2}+Q^{2})(R^{2}S^{2}-P^{2}Q^{2})+2PQRS(RS-PQ) = 0

( P 2 + Q 2 ) ( R S P Q ) ( R S + P Q ) + 2 P Q R S ( R S P Q ) = 0 (P^{2}+Q^{2})(RS-PQ)(RS+PQ)+2PQRS(RS-PQ) = 0

( R S P Q ) { ( P 2 + Q 2 ) ( R S + P Q ) + 2 P Q R S } = 0 (RS-PQ) \{ (P^{2}+Q^{2})(RS+PQ)+2PQRS \} = 0

Since P , Q , R , S > 0 P,Q,R,S > 0 , it follows that ( P 2 + Q 2 ) ( R S + P Q ) + 2 P Q R S > 0 (P^{2}+Q^{2})(RS+PQ)+2PQRS > 0 .

Therefore, R S = P Q RS = PQ .

2 x 2 + x + 2 2 x 2 x + 1 = x 2 + 2 x + 2 3 x 2 2 x + 1 \sqrt{2x^{2}+x+2}\sqrt{2x^{2}-x+1} = \sqrt{x^{2}+2x+2}\sqrt{3x^{2}-2x+1}

4 x 4 + 5 x 2 x + 2 = 3 x 4 + 4 x 3 + 3 x 2 2 x + 2 4x^{4}+5x^{2}-x+2 = 3x^{4}+4x^{3}+3x^{2}-2x+2

x 4 4 x 3 + 2 x 2 + x = 0 x^{4}-4x^{3}+2x^{2}+x = 0

x ( x 1 ) ( x 2 3 x 1 ) = 0 x(x-1)(x^{2}-3x-1) = 0

The two integer roots are x = 0 , 1 x = 0,1 .

The two irrational roots are x = 3 ± 13 2 x = \dfrac{3 \pm \sqrt{13}}{2} .

Therefore, m + n + a + b + c = 0 + 1 + 3 + 13 + 2 = 19 m+n+a+b+c = 0+1+3+13+2 = 19 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...