Square-Root Equations

Algebra Level 3

Let x x and y y be positive real numbers satisfying the following system of equations:

{ x + 2 + 8 x + y x + 2 8 x + y = 8 x y + 5 y + 1 8 x y 5 y + 1 x + y + 3 x y x + y 3 x y = 4 x + y + 4 x y 4 x + y 4 x y \begin{cases} \dfrac{\sqrt{x+2}+\sqrt{8x+y}}{\sqrt{x+2}-\sqrt{8x+y}} = \dfrac{\sqrt{8x-y}+\sqrt{5y+1}}{\sqrt{8x-y}-\sqrt{5y+1}} \\ \dfrac{\sqrt{x+y}+\sqrt{3x-y}}{\sqrt{x+y}-\sqrt{3x-y}} = \dfrac{\sqrt{4x+y}+\sqrt{4x-y}}{\sqrt{4x+y}-\sqrt{4x-y}} \end{cases}

Find x + y x+y .


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 12, 2018

The equations are of the form

A + B A B = C + D C D ( A + B ) ( C D ) = ( A B ) ( C + D ) A C A D + B C B D = A C + A D B C B D 2 B C = 2 A D B C = A D B 2 C 2 = A 2 D 2 \begin{aligned} \frac {A+B}{A-B} & = \dfrac {C+D}{C-D} \\ (A+B)(C-D) & = (A-B)(C+D) \\ AC-AD+BC-BD & = AC+AD-BC-BD \\ 2 BC & = 2AD \\ BC & = AD \\ B^2C^2 & = A^2D^2 \end{aligned}

Then equation 1 becomes:

( 8 x + y ) ( 8 x y ) = ( x + 2 ) ( 5 y + 1 ) . . . ( 1 a ) \begin{aligned} (8x+y)(8x-y) & = (x+2)(5y+1) & ...(1a) \end{aligned}

Equation 2:

( 3 x y ) ( 4 x + y ) = ( x + y ) ( 4 x y ) 12 x 2 x y y 2 = 4 x 2 + 3 x y y 2 8 x 2 4 x y = 0 4 x ( 2 x y ) = 0 Given that x , y > 0 y = 2 x . . . ( 2 a ) \begin{aligned} (3x-y)(4x+y) & = (x+y)(4x-y) \\ 12x^2 -xy - y^2 = 4x^2 + 3xy - y^2 \\ 8x^2-4xy & = 0 \\ 4x(2x-y) & = 0 & \small \color{#3D99F6} \text{Given that }x , y > 0 \\ \implies y & = 2x \quad ...(2a) \end{aligned}

Putting y = 2 x y=2x in equation 1a:

( 10 x ) ( 6 x ) = ( x + 2 ) ( 10 x + 1 ) 60 x 2 = 10 x 2 + 21 x + 2 50 x 2 21 x 2 = 0 ( 25 x + 2 ) ( 2 x 1 ) = 0 x = 1 2 Since x > 0 y = 2 x = 1 \begin{aligned} (10x)(6x) & = (x+2)(10x+1) \\ 60x^2 & = 10x^2+21x +2 \\ 50x^2 - 21x - 2 & = 0 \\(25x+2)(2x-1) & = 0 \\ \implies x & = \frac 12 & \small \color{#3D99F6} \text{Since }x > 0 \\ y & = 2x = 1 \end{aligned}

Therefore, x + y = 1 2 + 1 = 1.5 x+y = \dfrac 12 + 1 = \boxed{1.5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...