Let x and y be positive real numbers satisfying the following system of equations:
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ x + 2 − 8 x + y x + 2 + 8 x + y = 8 x − y − 5 y + 1 8 x − y + 5 y + 1 x + y − 3 x − y x + y + 3 x − y = 4 x + y − 4 x − y 4 x + y + 4 x − y
Find x + y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
The equations are of the form
A − B A + B ( A + B ) ( C − D ) A C − A D + B C − B D 2 B C B C B 2 C 2 = C − D C + D = ( A − B ) ( C + D ) = A C + A D − B C − B D = 2 A D = A D = A 2 D 2
Then equation 1 becomes:
( 8 x + y ) ( 8 x − y ) = ( x + 2 ) ( 5 y + 1 ) . . . ( 1 a )
Equation 2:
( 3 x − y ) ( 4 x + y ) 1 2 x 2 − x y − y 2 = 4 x 2 + 3 x y − y 2 8 x 2 − 4 x y 4 x ( 2 x − y ) ⟹ y = ( x + y ) ( 4 x − y ) = 0 = 0 = 2 x . . . ( 2 a ) Given that x , y > 0
Putting y = 2 x in equation 1a:
( 1 0 x ) ( 6 x ) 6 0 x 2 5 0 x 2 − 2 1 x − 2 ( 2 5 x + 2 ) ( 2 x − 1 ) ⟹ x y = ( x + 2 ) ( 1 0 x + 1 ) = 1 0 x 2 + 2 1 x + 2 = 0 = 0 = 2 1 = 2 x = 1 Since x > 0
Therefore, x + y = 2 1 + 1 = 1 . 5 .