Square Root Infinite Series #1

Algebra Level 2

Find the value of:

12 + 12 + 12 + \sqrt{12+\sqrt{12 + \sqrt{12 + \ldots}}}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Just C
Sep 25, 2020

If x x is 12 + 12 + 12 + \sqrt{12+\sqrt{12 + \sqrt{12 + \ldots}}} , then x 2 = 12 + 12 + 12 + 12 + x^2 = 12 + \sqrt{12+\sqrt{12 + \sqrt{12 + \ldots}}} .

Since x = 12 + 12 + 12 + x = \sqrt{12+\sqrt{12 + \sqrt{12 + \ldots}}} , x 2 = 12 + x x^2 = 12 + x .

We move all terms to the left side: x 2 x 12 = 0 x^2 - x - 12 = 0 and factor: ( x + 3 ) ( x 4 ) (x + 3)(x - 4) .

Solutions: x = 3 x = -3 or 4 4 .

Since 12 + 12 + 12 + \sqrt{12+\sqrt{12 + \sqrt{12 + \ldots}}} is definitely going to be positive, x = 4 x = 4 .

As a shortcut, just factor 12 (or the no. inside the roots) such that the factors have a difference of 1, then select the largest if the expression is positive (or vice-versa).

Shubhrajit Sadhukhan - 7 months ago

Defining the n n th term of the series as a n = 12 + 12 + 12 + 12 Number of 12’s = n a_n = \underbrace{\sqrt{12+ \sqrt{12+ \sqrt{12+ \cdots \sqrt{12}}}}}_{\text{Number of 12's }=n} . Then by the ratio test , lim n a n + 1 a n < 1 \displaystyle \lim_{n \to \infty} \frac {a_{n+1}}{a_n} < 1 , hence the series converges. Then we can assume:

x = 12 + 12 + 12 + Squaring both sides x 2 = 12 + 12 + 12 + 12 + x 2 = 12 + x x 2 x 12 = 0 ( x 4 ) ( x + 3 ) = 0 Since x > 0 x = 4 \begin{aligned} \blue x & = \blue{\sqrt{12+ \sqrt{12+ \sqrt{12+ \cdots}}}} & \small \blue{\text{Squaring both sides}} \\ x^2 & = 12 + \blue{\sqrt{12+ \sqrt{12+ \sqrt{12+ \cdots}}}} \\ x^2 & = 12 + \blue x \\ x^2 - x - 12 & = 0 \\ (x-4)(x+3) & = 0 & \small \blue{\text{Since }x > 0} \\ \implies x & = \boxed 4 \end{aligned}

Zakir Husain
Apr 6, 2021

S o l v i n g f o r g e n e r a l n : Solving\space for\space general \space n: l e t x = n + n + n + n + . . . let\space \red{x}=\sqrt{n+\red{\sqrt{n+\sqrt{n+\sqrt{n+...}}}}} x = n + x \Rightarrow \red{x}=\sqrt{n+\red{x}} x 2 = n + x \Rightarrow \red{x}^2 =n+\red{x} x 2 x n = 0 \Rightarrow \red{x}^2-\red{x}-n=0 F r o m Q u a d r a t i c F o r m u l a w e g e t From \space Quadratic\space Formula\space we\space get x = 1 + 1 + 4 n 2 \red{x}=\dfrac{1{^+_-}\sqrt{1+4n}}{2} n 1 1 + 4 n > 2 \because n\geq 1\therefore \sqrt{1+4n}>2 1 1 + 4 n < 0 x 0 \therefore 1-\sqrt{1+4n}<0 \because \red{x}\geq 0 n + n + n + n + . . . = 1 + 1 + 4 n 2 \Rightarrow \sqrt{n+\sqrt{n+\sqrt{n+\sqrt{n+...}}}}=\dfrac{1+\sqrt{1+4n}}{2} P u t n = 12 Put \space n=12 12 + 12 + 12 + . . . = 1 + 1 + 4 × 12 2 \Rightarrow \sqrt{12+\sqrt{12+\sqrt{12+...}}}=\dfrac{1+\sqrt{1+4\times 12}}{2} = 1 + 49 2 = 1 + 7 2 = 4 =\dfrac{1+\sqrt{49}}{2}=\dfrac{1+7}{2}=\boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...