Square Root Inside Square Roots Inside Square Root!

Algebra Level 4

121 + 29 720 + 27 + 648 25 504 + 23 448 21 80 \sqrt{\sqrt{121}+\sqrt{29-\sqrt{720}}+\sqrt{27+\sqrt{648}}-\sqrt{25-\sqrt{504}}+\sqrt{23-\sqrt{448}}-\sqrt{21-\sqrt{80}}}

Compute the expression above.


The answer is 4.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jul 12, 2016

Relevant wiki: Simplifying Expressions with Radicals - Intermediate

121 = 11 29 720 = ( 2 5 ) 2 + 3 2 2 180 = 2 5 3 27 + 648 = ( 3 2 ) 2 + 3 2 + 2 162 = 3 2 + 3 25 504 = ( 3 2 ) 2 + ( 7 ) 2 2 126 = 3 2 7 23 448 = ( 7 ) 2 + 4 2 2 112 = 4 7 21 80 = ( 2 5 ) 2 + 1 2 2 20 = 2 5 1 \small{\sqrt{121}=11\\\sqrt{29-\sqrt{720}}=\sqrt{(2\sqrt{5})^2+3^2-2\sqrt{180}}=2\sqrt 5-3\\ \sqrt{27+\sqrt{648}}=\sqrt{(3\sqrt{2})^2+3^2+2\sqrt{162}}=3\sqrt 2+3\\\sqrt{25-\sqrt{504}}=\sqrt{(3\sqrt{2})^2+(\sqrt 7)^2-2\sqrt{126}}=3\sqrt 2-\sqrt 7\\\sqrt{23-\sqrt{448}}=\sqrt{(\sqrt{7})^2+4^2-2\sqrt{112}}=4-\sqrt 7\\\sqrt{21-\sqrt{80}}=\sqrt{(2\sqrt{5})^2+1^2-2\sqrt{20}}=2\sqrt 5-1}

Substituting these values in expression we get : R = 11 + ( 2 5 3 ) + ( 3 2 + 3 ) ( 3 2 7 ) + ( 4 7 ) ( 2 5 1 ) \mathcal{R}=\sqrt{11+(2\sqrt 5-3)+(3\sqrt 2+3)-( 3\sqrt 2-\sqrt 7)+(4-\sqrt 7 )-(2\sqrt 5-1 )} = 11 + 5 = 4 \large =\sqrt{11+5}=\boxed{\color{#0C6AC7}{4}}

Hung Woei Neoh
Jul 13, 2016

Now, the trick to this question is to rewrite a ± b = c ± d \sqrt{a \pm \sqrt{b}}=\sqrt{c} \pm \sqrt{d} (Or, you can just grab your calculator, but that's no fun)

29 720 = p q 29 720 = p + q 2 p q \sqrt{29-\sqrt{720}}=\sqrt{p}-\sqrt{q}\\ 29-\sqrt{720}=p+q-2\sqrt{pq}

Compare the rational and irrational parts, and you get

29 = p + q 29=p+q\implies Eq.(1)

720 = 2 p q 720 = 4 p q p q = 180 q = 180 p -\sqrt{720}=-2\sqrt{pq}\\ 720=4pq\\ pq=180\\ q=\dfrac{180}{p}

Substitute this into Eq.(1):

29 = p + 180 p p 2 29 p + 180 = 0 ( p 20 ) ( p 9 ) = 0 p = 20 , p = 9 29=p+\dfrac{180}{p}\\ p^2-29p+180=0\\ (p-20)(p-9)=0\\ p=20,\;p=9

If p = 9 , q = 20 , p q < 0 p=9,\;q=20,\;\sqrt{p}-\sqrt{q}<0 , which is impossible. Therefore, p = 20 , q = 9 p=20,\;q=9 .

29 720 = 20 9 \implies \sqrt{29-\sqrt{720}}=\sqrt{20}-\sqrt{9}

Now I'm feeling lazy today, so you do the rest yourselves. You should get

27 + 648 = 9 + 18 25 504 = 18 7 23 448 = 16 7 21 80 = 20 1 \sqrt{27+\sqrt{648}}=\sqrt{9}+\sqrt{18}\\ \sqrt{25-\sqrt{504}}=\sqrt{18}-\sqrt{7}\\ \sqrt{23-\sqrt{448}}=\sqrt{16}-\sqrt{7}\\ \sqrt{21-\sqrt{80}}=\sqrt{20}-\sqrt{1}

Substitute all these into the expression:

R = 121 + 29 720 + 27 + 648 25 504 + 23 448 21 80 = 121 + ( 20 9 ) + ( 9 + 18 ) ( 18 7 ) + ( 16 7 ) ( 20 1 ) = 11 + 20 3 + 3 + 18 18 + 7 + 4 7 20 + 1 = 16 = 4 \mathcal R = \sqrt{\sqrt{121}+\sqrt{29-\sqrt{720}}+\sqrt{27+\sqrt{648}}- \sqrt{25-\sqrt{504}}+ \sqrt{23-\sqrt{448}}- \sqrt{21-\sqrt{80}}}\\ =\sqrt{\sqrt{121}+(\sqrt{20}-\sqrt{9})+(\sqrt{9}+\sqrt{18})-(\sqrt{18}-\sqrt{7})+(\sqrt{16}-\sqrt{7})-(\sqrt{20}-\sqrt{1})}\\ =\sqrt{\color{magenta}{11}\color{#3D99F6}{+\sqrt{20}}\color{#D61F06}{-3+3}\color{#EC7300}{+\sqrt{18}-\sqrt{18}}\color{#20A900}{+\sqrt{7}}\color{magenta}{+4}\color{#20A900}{-\sqrt{7}}\color{#3D99F6}{-\sqrt{20}}+\color{magenta}{1}}\\ =\sqrt{\color{magenta}{16}}\\ =\boxed{4}

Cheers.... (+1)... :-p

Rishabh Jain - 4 years, 11 months ago

Log in to reply

Ermmm......okay......

Hung Woei Neoh - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...