1 2 1 + 2 9 − 7 2 0 + 2 7 + 6 4 8 − 2 5 − 5 0 4 + 2 3 − 4 4 8 − 2 1 − 8 0
Compute the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Now, the trick to this question is to rewrite a ± b = c ± d (Or, you can just grab your calculator, but that's no fun)
2 9 − 7 2 0 = p − q 2 9 − 7 2 0 = p + q − 2 p q
Compare the rational and irrational parts, and you get
2 9 = p + q ⟹ Eq.(1)
− 7 2 0 = − 2 p q 7 2 0 = 4 p q p q = 1 8 0 q = p 1 8 0
Substitute this into Eq.(1):
2 9 = p + p 1 8 0 p 2 − 2 9 p + 1 8 0 = 0 ( p − 2 0 ) ( p − 9 ) = 0 p = 2 0 , p = 9
If p = 9 , q = 2 0 , p − q < 0 , which is impossible. Therefore, p = 2 0 , q = 9 .
⟹ 2 9 − 7 2 0 = 2 0 − 9
Now I'm feeling lazy today, so you do the rest yourselves. You should get
2 7 + 6 4 8 = 9 + 1 8 2 5 − 5 0 4 = 1 8 − 7 2 3 − 4 4 8 = 1 6 − 7 2 1 − 8 0 = 2 0 − 1
Substitute all these into the expression:
R = 1 2 1 + 2 9 − 7 2 0 + 2 7 + 6 4 8 − 2 5 − 5 0 4 + 2 3 − 4 4 8 − 2 1 − 8 0 = 1 2 1 + ( 2 0 − 9 ) + ( 9 + 1 8 ) − ( 1 8 − 7 ) + ( 1 6 − 7 ) − ( 2 0 − 1 ) = 1 1 + 2 0 − 3 + 3 + 1 8 − 1 8 + 7 + 4 − 7 − 2 0 + 1 = 1 6 = 4
Cheers.... (+1)... :-p
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Simplifying Expressions with Radicals - Intermediate
1 2 1 = 1 1 2 9 − 7 2 0 = ( 2 5 ) 2 + 3 2 − 2 1 8 0 = 2 5 − 3 2 7 + 6 4 8 = ( 3 2 ) 2 + 3 2 + 2 1 6 2 = 3 2 + 3 2 5 − 5 0 4 = ( 3 2 ) 2 + ( 7 ) 2 − 2 1 2 6 = 3 2 − 7 2 3 − 4 4 8 = ( 7 ) 2 + 4 2 − 2 1 1 2 = 4 − 7 2 1 − 8 0 = ( 2 5 ) 2 + 1 2 − 2 2 0 = 2 5 − 1
Substituting these values in expression we get : R = 1 1 + ( 2 5 − 3 ) + ( 3 2 + 3 ) − ( 3 2 − 7 ) + ( 4 − 7 ) − ( 2 5 − 1 ) = 1 1 + 5 = 4