Square root pair

Algebra Level 3

Find the number of positive integer pairs ( a , b ) (a, b) such that a + 2 b = a 2 b + b \sqrt{a+2\sqrt{b}}=\sqrt{a-2\sqrt{b}}+\sqrt{b}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hongqi Wang
Nov 23, 2020

a + 2 b = a 2 b + b a + 2 b a 2 b = b ( a + 2 b a 2 b ) 2 = b 2 a 2 a 2 4 b = b 2 a b = 2 a 2 4 b ( 2 a b ) 2 = 4 ( a 2 4 b ) 4 a 2 4 a b + b 2 = 4 a 2 16 b b 2 4 a b + 16 b = 0 b ( b + 16 4 a ) = 0 b = 4 a 16 = 4 ( a 4 ) 4 b 2 a b = 2 a 2 4 b 0 2 a b = 2 × b + 16 4 b = b 2 + 8 b 0 b 16 b = { 4 , 8 , 12 , 16 } \sqrt {a + 2\sqrt b} = \sqrt {a - 2\sqrt b} + \sqrt b \\ \sqrt {a + 2\sqrt b} - \sqrt {a - 2\sqrt b} = \sqrt b \\ (\sqrt {a + 2\sqrt b} - \sqrt {a - 2\sqrt b})^2 = b \\ 2a - 2 \sqrt{a^2 - 4b} = b \\ 2a - b = 2 \sqrt {a^2 - 4b} \\ (2a - b)^2 = 4(a^2 - 4b) \\ 4a^2 - 4ab + b^2 = 4a^2 - 16b \\ b^2 - 4ab + 16b = 0 \\ b(b + 16 - 4a) = 0 \\ b = 4a - 16 = 4(a - 4) \therefore 4 | b \\ 2a - b = 2 \sqrt {a^2 - 4b} \geq 0 \\ 2a - b = 2 \times \frac {b + 16}4 - b = \frac b2 + 8 - b \geq 0 \\ b \leq 16 \\ \therefore b = \{4, 8, 12, 16\}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...