Square Roots

Algebra Level 2

11 11 11 11 = ? \sqrt{11\sqrt{11\sqrt{11\sqrt{11}}}}= \, ?

1 1 5 / 16 11^{{5} / {16}} 1 1 1 / 16 11^{{1} / {16}} 1 1 3 / 16 11^{3 /{16}} 1 1 15 / 16 11^{15/{16}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

11 11 11 11 = ( 11 ( 11 ( 11 × 1 1 1 2 ) 1 2 ) 1 2 ) 1 2 = ( 11 ( 11 ( 1 1 3 2 ) 1 2 ) 1 2 ) 1 2 = ( 11 ( 11 × 1 1 3 4 ) 1 2 ) 1 2 = ( 11 × 1 1 7 8 ) 1 2 = 1 1 15 16 \begin{aligned} \sqrt{11 \sqrt{11 \sqrt{11 \sqrt{11}}}} & = \left(11 \left(11 \left(11 \times 11 ^{\frac{1}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ & = \left(11 \left(11 \left(11 ^{\frac{3}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ & = \left(11 \left(11 \times 11 ^{\frac{3}{4}} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \\ & = \left(11 \times 11 ^{\frac{7}{8}} \right)^{\frac{1}{2}} \\ & = \boxed{11 ^{\frac{15}{16}}} \end{aligned}

Kay Xspre
Jan 6, 2016

The question is in the form of 11 11 11 11 \sqrt{11\sqrt{11\sqrt{11\sqrt{11}}}} , which may be rewritten as 11 11 1 1 3 2 \sqrt{11\sqrt{11\sqrt{11^\frac{3}{2}}}} , then 11 11 ( 1 1 3 4 ) \sqrt{11\sqrt{11({11^\frac{3}{4}}})} , then 11 ( 1 1 7 8 ) \sqrt{11(11^\frac{7}{8})} , and finally, 1 1 15 16 11^\frac{15}{16}

Nice one...👍👍

Sanskar Agarwal - 5 years, 5 months ago
Debasis Rath
Jan 6, 2016

If we solve the expression we get 11^[1/2+1/4+1/8+1/6] solving this GP [1/2(1-1/16)]/(1/2)=15/16

Hence the answer is 11^15/16

1/6 1 16 \rightarrow \frac{1}{16}

Using calculator's method, ln 9.469033266995315845999036439934 + ln 11 = 0.9375 \frac{\ln 9.469033266995315845999036439934+}{\ln 11} = 0.9375

0.9375 × \times 16 = 15

Lu Chee Ket - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...