Square Roots Can be Big

Algebra Level 2

What is the value of x = ? x=? x = x 2 + 2020 x 2 + 2020 x 2 + 2020 x = \sqrt{x^2 + \sqrt{2020-\sqrt{x^2 + \sqrt{2020 - \sqrt{x^2 + \sqrt{2020 - \sqrt{\cdots}}}}}}}


The answer is 2020.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 17, 2019

x = x 2 + 2020 x 2 + 2020 x 2 + 2020 x = x 2 + 2020 x 2 + 2020 x Squaring both sides x 2 = x 2 + 2020 x x = 2020 \begin{aligned} x & = \sqrt{x^2 + \sqrt{2020-\sqrt{x^2 + \sqrt{2020 - \sqrt{x^2 + 2020 - \sqrt{\cdots}}}}}} \\ x & = \sqrt{x^2 + \sqrt{2020-\sqrt{x^2 + \sqrt{2020 - x}}}} & \small \blue{\text{Squaring both sides}} \\ x^2 & = x^2 + 2020 - x \\ \implies x & = \boxed {2020} \end{aligned}

Anurag Biswas
Dec 17, 2019

x 2 = x 2 + 2020 x 2 + 2020 x^2 = x^2 +\sqrt{2020-\sqrt{x^2+\sqrt{2020 - \ldots}}}

2020 x 2 + 2020 = 0 \Rightarrow\sqrt{2020-\sqrt{x^2+\sqrt{2020 - \ldots}}} = 0

x 2 + 2020 = 2020 \Rightarrow \sqrt{x^2+\sqrt{2020 - \ldots}} = 2020

S i n c e x = x 2 + 2020 x 2 + 2020 Since\,x = \sqrt{x^2 +\sqrt{2020-\sqrt{x^2+\sqrt{2020 - \ldots}}}}

S o x = 2020 So \,x = 2020

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...