Square roots of variables?

Algebra Level 3

{ a 1 a + b 5 a + b + c 14 a + b + c + d 30 \begin{cases} a \leq 1 \\ a+b \leq 5 \\ a+b+c \leq 14 \\ a+b+c+d \leq 30 \end{cases}

Let a , b , c a,b,c and d d be positive real numbers satisfying the system of inequalities above. What is the maximum value of

a + b + c + d ? \sqrt{a} + \sqrt{b} + \sqrt{c} + \sqrt{d} \quad ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sharky Kesa
Aug 23, 2016

Note that f ( x ) = x f(x)=\sqrt{x} is a concave function, so by weighted Jensen's inequality, we have

x 1 f ( y 1 ) + x 2 f ( y 2 ) + x 3 f ( y 3 ) + x 4 f ( y 4 ) x 1 + x 2 + x 3 + x 4 f ( x 1 y 1 + x 2 y 2 + x 3 y 3 + x 4 y 4 x 1 + x 2 + x 3 + x 4 ) \dfrac {x_1 f(y_1) + x_2 f(y_2) + x_3 f(y_3) + x_4 f(y_4)}{x_1 + x_2 + x_3 + x_4} \leq f \left (\dfrac {x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4}{x_1 + x_2 + x_3 + x_4} \right )

If we substitute y 1 = a y_1=a , y 2 = b 4 y_2=\frac {b}{4} , y 3 = c 9 y_3 = \frac {c}{9} , y 4 = d 16 y_4 = \frac {d}{16} , x 1 = 1 10 x_1 = \frac {1}{10} , x 2 = 2 10 x_2 = \frac {2}{10} , x 3 = 3 10 x_3 = \frac {3}{10} and x 4 = 4 10 x_4 = \frac {4}{10} , we have

1 10 a + 2 10 b 4 + 3 10 c 9 + 4 10 d 16 a 10 + b 20 + c 30 + d 40 a + b + c + d 10 12 a + 6 b + 4 c + 3 d 120 \begin{aligned} \dfrac {1}{10}\sqrt{a} + \dfrac {2}{10} \sqrt{\dfrac {b}{4}} + \dfrac {3}{10} \sqrt{\dfrac {c}{9}} + \dfrac {4}{10} \sqrt{\dfrac {d}{16}} &\leq \sqrt{\dfrac {a}{10} + \dfrac {b}{20} + \dfrac {c}{30} + \dfrac {d}{40}}\\ \sqrt{a}+\sqrt{b}+ \sqrt{c} + \sqrt{d} &\leq 10 \sqrt{\dfrac {12a + 6b + 4c + 3d}{120}} \end{aligned}

Note that 12 a + 6 b + 4 c + 3 d = 3 ( a + b + c + d ) + ( a + b + c ) + 2 ( a + b ) + 6 a 3 × 30 + 14 + 2 × 5 + 6 × 1 = 120 12a + 6b + 4c + 3d = 3(a+b+c+d)+(a+b+c)+2(a+b)+6a \leq 3 \times 30 + 14 + 2 \times 5 + 6 \times 1 = 120 . Thus,

12 a + 6 b + 4 c + 3 d 120 1 \sqrt{\dfrac {12a + 6b + 4c + 3d}{120}} \leq 1

so, a + b + c + d 10 \sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\leq 10 .

This is a great problem. I guessed my way through based on intuition. y = x y=\sqrt{x} for non-negative integers grows very rapidly for small values of x x (consider the function for 0 x 4 0 \leq x \leq 4 ) while grows very slowly for larger values. So by intuition, I tried to pick values in such a way to distribute the magnitude equally, which lead to 1 , 4 , 9 , 16 1,4,9,16 permutation. This is of course a dumb way to do it and your proof is great!

Arulx Z - 4 years, 9 months ago

Nice solution. It involves large amount of practicing on Jensen's inequality.

Priyanshu Mishra - 4 years, 9 months ago
Prince Loomba
Aug 23, 2016

Just thought a=1,b=4,c=9,d=16..

Attempted 10 and was correct!

This is not a solution. Can you prove the maximum value is 10?

Sharky Kesa - 4 years, 9 months ago

Log in to reply

You proved..

What need for me

Prince Loomba - 4 years, 9 months ago
Priyanshu Mishra
Sep 5, 2016

New solution:

We will prove a more general statement:

If a 1 , a 2 , . . . , a n { a }_{ 1 },{ a }_{ 2 },...,{ a }_{ n } are positive, 0 b 1 b 2 . . . b n 0\le { b }_{ 1 }\le { b }_{ 2 }\le ...\le { b }_{ n } , and for all k n k \le n ,

a 1 + a 2 + . . . + a k b 1 + b 2 + . . . + b k { a }_{ 1 }+{ a }_{ 2 }+...+{ a }_{ k }\le { b }_{ 1 }+{ b }_{ 2 }+...+{ b }_{ k } , then

a 1 + a 2 + . . . + a n b 1 + b 2 + . . . b n \large\ \sqrt { { a }_{ 1 } } +\sqrt { { a }_{ 2 } } +...+\sqrt { { a }_{ n } } \le \sqrt { { b }_{ 1 } } +\sqrt { { b }_{ 2 } } +...\sqrt { { b }_{ n } }

Let us prove the above result. We have

r = 1 n a r b r = a 1 ( 1 b 1 1 b 2 ) + ( a 1 + a 2 ) ( 1 b 2 1 b 3 ) + . . . . + ( a 1 + a 2 + . . . + a n ) ( 1 b n ) \large\ \sum _{ r=1 }^{ n }{ \frac { { a }_{ r } }{ \sqrt { { b }_{ r } } } } =\quad { a }_{ 1 }\left( \frac { 1 }{ \sqrt { { b }_{ 1 } } } -\frac { 1 }{ \sqrt { { b }_{ 2 } } } \right) +\left( { a }_{ 1 }+{ a }_{ 2 } \right) \left( \frac { 1 }{ \sqrt { { b }_{ 2 } } } -\frac { 1 }{ \sqrt { { b }_{ 3 } } } \right) +....+\left( { a }_{ 1 }+{ a }_{ 2 }+...+{ a }_{ n } \right) \left( \frac { 1 }{ \sqrt { { b }_{ n } } } \right) .

The differences in the parentheses are all positive. Using the hypothesis, we obtain that this expression is less than or equal to

b 1 ( 1 b 1 1 b 2 ) + ( b 1 + b 2 ) ( 1 b 2 1 b 3 ) + . . . . + ( b 1 + b 2 + . . . + b n ) ( 1 b n ) = b 1 + b 2 + . . . + b n \large\ \quad { b }_{ 1 }\left( \frac { 1 }{ \sqrt { { b }_{ 1 } } } -\frac { 1 }{ \sqrt { { b }_{ 2 } } } \right) +\left( b_{ 1 }+{ b }_{ 2 } \right) \left( \frac { 1 }{ \sqrt { { b }_{ 2 } } } -\frac { 1 }{ \sqrt { { b }_{ 3 } } } \right) +....+\left( { b }_{ 1 }+{ b }_{ 2 }+...+b_{ n } \right) \left( \frac { 1 }{ \sqrt { { b }_{ n } } } \right) =\sqrt { { b }_{ 1 } } +\sqrt { { b }_{ 2 } } +...+\sqrt { { b }_{ n } } .

Hence,

r = 1 n a r b r b 1 + b 2 + . . . b n \large\ \sum _{ r=1 }^{ n }{ \frac { { a }_{ r } }{ \sqrt { { b }_{ r } } } } \le \sqrt { { b }_{ 1 } } +\sqrt { { b }_{ 2 } } +...\sqrt { { b }_{ n } } .

Using this result and and the CAUCHY-SCHWARZ inequality, we obtain

( a 1 + a 2 + . . . + a n ) 2 = ( r = 1 n ( b r 4 . a r b r ) ) 2 \large\ { \left( \sqrt { { a }_{ 1 } } +\sqrt { { a }_{ 2 } } +...+\sqrt { { a }_{ n } } \right) }^{ 2 }={ \left( \sum _{ r=1 }^{ n }{ \left( \sqrt [ 4 ]{ { b }_{ r } } .\sqrt { \frac { { a }_{ r } }{ \sqrt { { b }_{ r } } } } \right) } \right) }^{ 2 }

\large\ \le

( b 1 + b 2 + . . . + b n ) ( r = 1 n ( a r b r ) ) ( b 1 + b 2 + . . . + b n ) 2 \large\ \left( \sqrt { { b }_{ 1 } } +\sqrt { { b }_{ { 2 } } } +...+\sqrt { { b }_{ n } } \right) \left( \sum _{ r=1 }^{ n }{ \left( \frac { { a }_{ r } }{ \sqrt { { b }_{ r } } } \right) } \right) \le { \left( \sqrt { b_{ 1 } } +\sqrt { { b }_{ 2 } } +...+\sqrt { b_{ n } } \right) }^{ 2 } .

This gives

a 1 + a 2 + . . . + a n b 1 + b 2 + . . . b n \large\ \sqrt { { a }_{ 1 } } +\sqrt { { a }_{ 2 } } +...+\sqrt { { a }_{ n } } \le \sqrt { { b }_{ 1 } } +\sqrt { { b }_{ 2 } } +...\sqrt { { b }_{ n } } .

The special case of the original problem is obtained for n = 4 n = 4 , by setting b k = k 2 { b }_{ k } = { { k }^{ 2 } } , k = 1 , 2 , 3 , 4 k = 1, 2, 3, 4

Which gives us a + b + c + d 10 \large\ \sqrt { a } + \sqrt { b } + \sqrt { c } + \sqrt { d } \le 10 .

Please tell how the solution is.

It is wrong since you haven't considered what if a , b , c a, b, c are quite small and d d becomes massive (eg a = b = c = 1 a=b=c=1 and d = 27 d=27 , which satisfies the equations. You cannot subtract inequalities like that unfortunately.

Sharky Kesa - 4 years, 9 months ago

Log in to reply

I have posted a new solution. Please tell how it is.

Priyanshu Mishra - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...