Square roots vs. integer

Algebra Level 3

2 + 3 + 5 + 6 + 7 + 8 4 + 9 \large{\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{6}+\sqrt{7}+\sqrt{8} \quad \Large\square \quad 4+9}

> Equal Almost equal <

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hải Trung Lê
Aug 2, 2016

2 > 1.4 ( 2 > 1. 4 2 = 1.96 ) 3 > 1.7 ( 3 > 1. 7 2 = 2.89 ) 5 > 2.2 ( 5 > 2. 2 2 = 4.84 ) 6 > 2.4 ( 6 > 2. 4 2 = 5.76 ) 7 > 2.6 ( 7 > 2. 6 2 = 6.76 ) 8 > 2.9 ( 8 > 2. 8 2 = 7.84 ) 2 + 3 + 5 + 6 + 7 + 8 > 1.4 + 1.7 + 2.2 + 2.4 + 2.6 + 2.8 = 13.1 > 4 + 9 \color{#D61F06}{\sqrt{2}}>\color{#3D99F6}{1.4}\ (2>1.4^2=1.96)\\ \color{#D61F06}{\sqrt{3}}>\color{#3D99F6}{1.7}\ (3>1.7^2=2.89)\\ \color{#D61F06}{\sqrt{5}}>\color{#3D99F6}{2.2}\ (5>2.2^2=4.84)\\ \color{#D61F06}{\sqrt{6}}>\color{#3D99F6}{2.4}\ (6>2.4^2=5.76)\\ \color{#D61F06}{\sqrt{7}}>\color{#3D99F6}{2.6}\ (7>2.6^2=6.76)\\ \color{#D61F06}{\sqrt{8}}>\color{#3D99F6}{2.9}\ (8>2.8^2=7.84)\\ \implies \color{#D61F06}{\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{6}+\sqrt{7}+\sqrt{8}}>\color{#3D99F6}{1.4+1.7+2.2+2.4+2.6+2.8}=13.1>4+9 So the answer is > \boxed{>}

Mohammad Hamdar
Oct 23, 2015

when you square the above 2 sides you will get : ( 2 + 3 + 5 + 6 + 7 + 8 ) 2 (\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{6}+\sqrt{7}+\sqrt{8})^{2} = ( 2 + 3 + 5 ) 2 + ( 6 + 7 + 8 ) 2 + ( 2 × ( 2 + 3 + 5 ) × ( 6 + 7 + 8 ) ) = 177.04 (\sqrt{2}+\sqrt{3}+\sqrt{5})^{2}+(\sqrt{6}+\sqrt{7}+\sqrt{8})^{2}+(2×(\sqrt{2}+\sqrt{3}+\sqrt{5})×(\sqrt{6}+\sqrt{7}+\sqrt{8}))=177.04 which is greater than ( 4 + 9 ) 2 = 169 (4+9)^{2}=169 so \boxed{\geq}

. .
Feb 8, 2021

I will say until the first digit of those irrational numbers. 2 = 1.4 , 3 = 1.7 , 5 = 2.2 , 6 = 2.4 , 7 = 2.6 , 8 = 2.8. \sqrt{2} = 1.4, \sqrt{3} = 1.7, \sqrt{5} = 2.2, \sqrt{6} = 2.4, \sqrt{7} = 2.6, \sqrt{8} = 2.8. I know those numbers are not equal, but it is natural to calculate easier to use approximate numbers. Then add the numbers. We get 13.1 13. 13.1 \boxed{} 13. Then the answer is > . \boxed{>}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...