Square roots with a , b , c a,b,c

Algebra Level 5

a b a b c + 2 + b c b c a + 2 + c a c a b + 2 \large \sqrt{\dfrac{ab}{ab-c+2}}+\sqrt{\dfrac{bc}{bc-a+2}}+\sqrt{\dfrac{ca}{ca-b+2}}

Let a , b a,b and c c be positive real numbers satisfying a + b + c = 1 a+b+c=1 . If the maximum value of the expression above can be written as m n \dfrac{m}{n} , where m m and n n are coprime positive integers, find m n mn .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P C
May 5, 2016

Call the expression P P , we see that P = a b a b c + 2 = a b a b + a + b + 1 P=\displaystyle\sum{\sqrt{\frac{ab}{ab-c+2}}}=\displaystyle\sum{\sqrt{\frac{ab}{ab+a+b+1}}} By AM-GM we have a + b 2 a b a+b\geq 2\sqrt{ab} and the same for b , c b,c and c , a c,a a b a b + a + b + 1 a b a b + 2 a b + 1 \therefore \displaystyle\sum{\sqrt{\frac{ab}{ab+a+b+1}}}\leq \displaystyle\sum{\sqrt{\frac{ab}{ab+2\sqrt{ab}+1}}} P a b ( a b + 1 ) 2 = a b a b + 1 \Leftrightarrow P\leq \displaystyle\sum{\sqrt{\frac{ab}{(\sqrt{ab}+1)^2}}}=\displaystyle\sum{\frac{\sqrt{ab}}{\sqrt{ab}+1}} 3 P 1 a b + 1 \Leftrightarrow 3-P\geq \displaystyle\sum{\frac{1}{\sqrt{ab}+1}} By Titu's Lemma we get 1 a b + 1 9 a b + 3 \displaystyle\sum{\frac{1}{\sqrt{ab}+1}}\geq \frac{9}{\displaystyle\sum{\sqrt{ab}}+3} and a b + 3 a + b + c + 3 = 4 \displaystyle\sum{\sqrt{ab}}+3\leq a+b+c+3=4 1 a b + 1 9 a b + 3 9 4 \therefore \displaystyle\sum{\frac{1}{\sqrt{ab}+1}}\geq \frac{9}{\displaystyle\sum{\sqrt{ab}}+3}\geq \frac{9}{4} 3 P 9 4 \therefore 3-P\geq \frac{9}{4} P 3 4 \Leftrightarrow P\leq\frac{3}{4} The equality holds when a = b = c = 1 3 a=b=c=\frac{1}{3}

How about U.C.T ?

Son Nguyen - 5 years, 1 month ago

And the minimum I think we should let a , b , c a,b,c are non-negative.

Son Nguyen - 5 years, 1 month ago
Son Nguyen
May 5, 2016

Call the expression is P P P = a b a b + a + b + 1 = a b ( a + 1 ) ( b + 1 ) 3 ( a a + 1 + b b + 1 + c c + 1 ) P=\sum \sqrt{\frac{ab}{ab+a+b+1}}=\sqrt{\frac{ab}{(a+1)(b+1)}}\leq 3(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1})

We are going to prove: a a + 1 3 4 a \sum \frac{a}{a+1}\leq \frac{3}{4}a

4 a 3 a ( a + 1 ) 4a\leq 3a(a+1)

( 3 a 1 ) a 0 (3a-1)a\geq 0 always true with a 1 3 a\geq \frac{1}{3} and a , b , c a,b,c are positive reals

So P 3 4 P\leq \frac{3}{4} and the equality holds when a = b = c = 1 3 a=b=c=\frac{1}{3}

This should be better P = a b a b + a + b + 1 = a b ( a + 1 ) ( b + 1 ) ( a a + 1 + b b + 1 + c c + 1 ) P=\sum \sqrt{\frac{ab}{ab+a+b+1}}=\sum \sqrt{\frac{ab}{(a+1)(b+1)}}\leq \bigg(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\bigg) We need to prove that a a + 1 1 4 + 9 4 ( a 1 3 ) \frac{a}{a+1}\leq \frac{1}{4}+\frac{9}{4}\big(a-\frac{1}{3}\big) 3 ( 3 a 1 ) 2 a + 1 0 \Leftrightarrow \frac{-3(3a-1)^2}{a+1}\leq 0 The above inequality is true for every positive real a a , proving the similar inequality with b b and c c then combine all three inequalities we get P 3 4 P\leq\frac{3}{4}

P C - 5 years, 1 month ago

Log in to reply

Ha ha ha ha ha.Nice!

Son Nguyen - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...