Square trig

Geometry Level 4

If a a and b b are positive integers such that

8 + 32 + 768 = a cos π b \large \sqrt{8+\sqrt{32+\sqrt{768}}} = a \cos \dfrac{\pi}{b}

Find a + b a+b .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Feb 19, 2016

H = 8 + 32 + 768 \large\mathfrak{H}= \sqrt{8+\sqrt{32+\sqrt{768}}} = 2 2 + 2 + 3 \large =2 \sqrt{2+\sqrt{\color{#D61F06}{2+\sqrt{3}}}} Note : 2 + 3 = 1 2 ( 3 + 1 ) 2 \small{\text{Note}:\color{#D61F06}{2+\sqrt{3}}=\dfrac{1}{2}(\sqrt3+1)^2} H = 2 2 + 3 + 1 2 \large \therefore \mathfrak{H}=2 \sqrt{2+\dfrac{\sqrt3+1}{\sqrt2}} = 2 2 1 + 3 + 1 2 2 \large =2\sqrt2 \sqrt{1+\dfrac{\sqrt3+1}{2\sqrt2}} Note : 3 + 1 2 2 = cos ( π 12 ) 1 + cos 2 A = 2 cos 2 A \small{\text{Note}:\color{#D61F06}{\dfrac{\sqrt3+1}{2\sqrt2}=\cos (\dfrac{\pi}{12})\\ 1+\cos 2A=2\cos^2 A}} H = 2 2 1 + cos π 12 \large \mathfrak{H}=2\sqrt2\sqrt{1+\cos \frac{\pi}{12}} = 4 cos π 24 \large =\color{#20A900}{4}\cos \frac{\pi}{\color{#20A900}{24}} 4 + 24 = 28 \huge \color{#20A900}{4+24}=\boxed{\color{#007fff}{28}}

I did the same way. But I found C o s π 24 = ( 2 + 2 + 3 2 ) Cos\dfrac \pi {24}=\left (\dfrac{\sqrt{2+\sqrt{2+\sqrt3}} }2 \right ) from google.

Niranjan Khanderia - 5 years, 3 months ago
Ahmad Saad
Feb 19, 2016

Good solution from the fundamentals. Up voted.

Niranjan Khanderia - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...