sin 2 θ 1 − cos 2 θ 1 − tan 2 θ 1 − cot 2 θ 1 − sec 2 θ 1 − csc 2 θ 1 = − 3
Find the number of solutions of θ in the interval ( 0 , 2 π ) that satisfy the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Or you can note that there is one solution for each quadrant. Since we're covering all four quadrant, then there is 4 solutions.
sin 2 θ 1 − cos 2 θ 1 − tan 2 θ 1 − cot 2 θ 1 − sec 2 θ 1 − csc 2 θ 1 = − 3 Writing this in terms of sin θ and cos θ , we obtain sin 2 θ 1 − cos 2 θ 1 − sin 2 θ cos 2 θ − cos 2 θ sin 2 θ − cos 2 θ − sin 2 θ = − 3 Subsitute all sin 2 θ with x and cos 2 θ with 1 − x , we obtain x 1 − 1 − x 1 − x 1 − x − 1 − x x − ( 1 − x ) − x = − 3 x − x 2 1 − x − x − x 2 x − x − x 2 1 − 2 x + x 2 − x − x 2 x 2 − 1 = − 3 x − x 2 1 − x − x − 1 + 2 x − x 2 − x 2 = − 2 x − x 2 − 2 x 2 = − 2 Multiplying on both sides, we get − 2 x 2 = − 2 x + 2 x 2 4 x 2 − 2 x = 0 Factoring yields 2 x ( 2 x − 1 ) = 0 x = 0 , 2 1 Recall that sin 2 θ = x , so s i n 2 θ = 0 , 2 1 , and sin θ = 0 , ± 2 1 . However, sin θ cannot equal 0 because then sin 2 θ would be 0 and sin 2 θ 1 would be undefined. Therefore sin θ must equal ± 2 1 or 2 2 . Therefore θ must have 4 solutions: 4 π , 4 3 π , 4 5 π , a n d 4 7 π .
Problem Loading...
Note Loading...
Set Loading...
sin 2 θ 1 − cos 2 θ 1 − tan 2 θ 1 − cot 2 θ 1 − sec 2 θ 1 − csc 2 θ 1 = csc 2 θ − sec 2 θ − cot 2 θ − tan 2 θ − cos 2 θ − sin 2 θ = ( csc 2 θ − cot 2 θ ) − sec 2 θ − tan 2 θ − ( cos 2 θ + sin 2 θ ) = 1 − ( 1 + tan 2 θ ) − tan 2 θ − 1 = − 1 − tan 2 θ − tan 2 θ = − 2 tan 2 θ = tan 2 θ = tan θ = − 3 − 3 − 3 − 3 − 3 − 2 1 ± 1
Thus,
⎩ ⎪ ⎨ ⎪ ⎧ tan θ = 1 ⇒ θ = 4 π , 4 5 π tan θ = − 1 ⇒ θ = 4 3 π , 4 7 π
Hence, This equation has 4 solutions in the interval ( 0 , 2 π ) .