Squared length triangle inequalities

Geometry Level 2

A triangle has side lengths x , x, x 2 , x^2, and 1 2 . \frac{1}{2}. Which of the following intervals describes all the values that x x can take?

( 1 + 3 2 , 1 + 3 2 ) \left(\frac{-1+\sqrt{3}}{2},\frac{1+\sqrt{3}}{2}\right) ( 0 , 1 + 3 2 ) \left(0,\frac{1+\sqrt{3}}{2}\right) [ 1 2 , 1 ] \left[\frac{1}{2},1\right] ( 1 + 3 2 , 1 2 ] [ 1 , 1 + 3 2 ) \left(\frac{-1+\sqrt{3}}{2},\frac{1}{2}\right] \cup \left[1,\frac{1+\sqrt{3}}{2}\right) ( 1 + 3 2 , ) \left(\frac{-1+\sqrt{3}}{2},\infty\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Andy Hayes
Jan 13, 2017

Note that if 0 < x < 1 , 0<x<1, then x > x 2 , x>x^2, and if x 1 , x\ge 1, then x 2 x . x^2 \ge x.

Case 1 : 0 < x < 1 2 . 0<x < \frac{1}{2}.

1 2 \frac{1}{2} is the length of the longest side. By the triangle inequality ,

x 2 + x > 1 2 . x^2 + x > \frac{1}{2}.

Solving this inequality gives

x < 1 3 2 x > 1 + 3 2 . x<\frac{-1-\sqrt{3}}{2} \cup x>\frac{-1+\sqrt{3}}{2}.

Subject to the conditions of this case, the interval is ( 1 + 3 2 , 1 2 ) . \left(\frac{-1+\sqrt{3}}{2},\frac{1}{2}\right).

Case 2 : 1 2 x < 1. \frac{1}{2} \le x<1.

x x is the length of the longest side. By the triangle inequality,

x 2 + 1 2 > x . x^2+\frac{1}{2} > x.

The solution to this inequality is x R . x\in\mathbb{R}. Subject to the conditions of this case, the interval is [ 1 2 , 1 ) . \left[\frac{1}{2},1\right).

Case 3 : x 1. x \ge 1.

x 2 x^2 is the length of the longest side. By the triangle inequality,

x + 1 2 > x 2 . x+\frac{1}{2} > x^2.

Solving this inequality gives

1 3 2 < x < 1 + 3 2 . \frac{1-\sqrt{3}}{2} < x < \frac{1+\sqrt{3}}{2}.

Subject to the conditions of this case, the interval is [ 1 , 1 + 3 2 ) . \left[1,\frac{1+\sqrt{3}}{2}\right).

Taking into account all cases, the interval of values that x x can take is:

( 1 + 3 2 , 1 + 3 2 ) . \left(\frac{-1+\sqrt{3}}{2},\frac{1+\sqrt{3}}{2}\right).

Santu Paul
Oct 19, 2018

By triangle inequality,

x 2 + x > 1 / 2 x^{2} + x > 1/2

2 x 2 + 2 x 1 > 0 \Rightarrow 2x^{2} +2x - 1 > 0

which can be solved by wavy curve, to get 1 ± 3 2 \frac{-1 \pm \sqrt{3}}{2} as critical points, but we can ignore the negative value i.e. 1 3 2 \frac{-1 - \sqrt{3}}{2} .

Now, the region ( 1 + 3 2 , \frac{-1 + \sqrt{3}}{2},\infty ) gives positive values.

Similarly,

x + 1 / 2 > x 2 x + 1/2 > x^{2}

2 x 2 2 x 1 < 0 \Rightarrow 2x^{2} -2x - 1 < 0

By wavy curve (ignoring the negative values) the region ( 0 , 1 + 3 2 0,\frac{1 + \sqrt{3}}{2} ) gives negative values.

Also,

x 2 + 1 / 2 > x x^{2} + 1/2 > x

2 x 2 2 x + 1 > 0 \Rightarrow 2x^{2} -2x +1 > 0

x 2 + ( x 1 ) 2 > 0 \Rightarrow x^{2} + (x -1)^{2} > 0

Which is always true since x is positive. ( Equality doesn't hold since x > 0 x > 0 )

We require the region common in both i.e. ( 1 + 3 2 , 1 + 3 2 \frac{-1 + \sqrt{3}}{2},\frac{1 + \sqrt{3}}{2} )

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...