Squared like times 10

Algebra Level 2

Find x x 's in ( 1 + x 10 ) 2 = 10 + x (1+\frac{x}{10})^2=10+x

10 , 90 10,-90 10 , 90 -10,90 10 , 90 10,90 10 , 90 -10,-90

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Munem Shahriar
Aug 26, 2018

( 1 + x 10 ) 2 = 10 + x ( x + 10 10 ) 2 = 10 + x ( x + 10 ) 2 = 100 ( 10 + x ) x 2 + 20 x + 100 = 1000 + 100 x x 2 80 x 900 = 0 x 2 90 x + 10 x 900 = 0 x ( x 90 ) + 10 ( x 90 ) = 0 ( x 90 ) ( x + 10 ) = 0 \begin{aligned} \left(1 + \dfrac x{10} \right)^2 & = 10 + x \\ \Rightarrow \left(\dfrac{x + 10}{10}\right)^2 & =10 + x \\ \Rightarrow (x + 10)^2 & = 100(10 + x) \\ \Rightarrow x^2 + 20x + 100 & = 1000+ 100x \\ \Rightarrow x^2-80x -900 & = 0 \\ \Rightarrow x^2 -90x + 10x - 900 & = 0 \\ \Rightarrow x(x - 90) + 10(x - 90) & = 0 \\ \Rightarrow (x -90)(x +10) & = 0 \\ \end{aligned}

Hence the answer is x = 90 x = 90 or x = 10 x = -10

X X
Aug 19, 2018

( 10 + x ) 2 = 100 ( 10 + x ) (10+x)^2=100(10+x)

If 10 + x 10+x does not equal to 0 0 , then 10 + x = 100 , x = 90 10+x=100,x=90

If 10 + x 10+x equals to 0 0 , then x = 10 x=-10

Hence, the answer is 10 , 90 -10,90

Gia Hoàng Phạm
Sep 20, 2018

( 1 + x 10 ) 2 = 10 + x ( 10 + x ) 2 = 1 0 2 ( 10 + x ) = 1 0 2 + 2 × 10 x + x 2 = 100 ( 10 + x ) = 100 + 20 x + x 2 = 1000 + 100 x x 2 80 x 900 = 0 (1+\frac{x}{10})^2=10+x \implies (10+x)^2=10^2(10+x)=10^2+2 \times 10x+x^2=100(10+x)=100+20x+x^2=1000+100x \implies x^2-80x-900=0

( 80 ) ± ( 80 ) 2 4 × 1 × 900 2 × 1 = 80 ± 6400 ( 3600 ) 2 = 80 ± 6400 + 3600 2 = 80 ± 10000 2 = 80 ± 100 2 \frac{-(-80) \pm \sqrt{(-80)^2-4 \times 1 \times -900}}{2 \times 1}=\frac{80 \pm \sqrt{6400-(-3600)}}{2}=\frac{80 \pm \sqrt{6400+3600}}{2}=\frac{80 \pm \sqrt{10000}}{2}=\frac{80 \pm 100}{2}

So the answer is 10 , 90 \boxed{\large{-10,90}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...