Squared Triangle Sum

Calculus Level 3

1 1 2 + 1 ( 1 + 2 ) 2 + 1 ( 1 + 2 + 3 ) 2 + 1 ( 1 + 2 + 3 + 4 ) 2 + = ? \frac{1}{1^2} + \frac{1}{(1+2)^2} + \frac{1}{(1+2+3)^2} + \frac{1}{(1+2+3+4)^2} + \cdots =\ ?

2 2 5 π 2 8 \frac{5\pi^2}{8} 4 π 2 3 12 \frac{4\pi^2}{3} - 12 π 2 6 \frac{\pi^2}{6} π 4 \frac{\pi}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 13, 2019

Since the sum of first n n positive integers is given by n ( n + 1 ) 2 \dfrac {n(n+1)}2 , the given sum can be rewritten as:

S = n = 1 1 ( n ( n + 1 ) 2 ) 2 = n = 1 4 n 2 ( n + 1 ) 2 By partial fraction decomposition = n = 1 ( 4 ( n + 1 ) 2 + 4 n 2 + 8 n + 1 8 n ) As Riemann zeta function ζ ( s ) = k = 1 1 k s = 8 ζ ( 2 ) 4 8 and ζ ( 2 ) = π 2 6 = 4 π 2 3 12 \begin{aligned} S & = \sum_{n=1}^\infty \frac 1{\left(\frac {n(n+1)}2\right)^2} = \sum_{n=1}^\infty \frac 4{n^2(n+1)^2} & \small \blue{\text{By partial fraction decomposition}} \\ & = \sum_{n=1}^\infty \left(\frac 4{(n+1)^2} + \frac 4{n^2} + \frac 8{n+1} - \frac 8n \right) & \small \blue{\text{As Riemann zeta function }\zeta(s) = \sum_{k=1}^\infty \frac 1{k^s}} \\ & = 8 \zeta(2) - 4 - 8 & \small \blue{\text{and }\zeta(2) = \frac {\pi^2}6} \\ & = \boxed{\frac {4\pi^2}3 - 12} \end{aligned}

The sum can be expressed into the summation:

n = 1 1 ( 1 + 2 + + n ) 2 = n = 1 1 [ n ( n + 1 ) 2 ] 2 = n = 1 4 n 2 ( n + 1 ) 2 = 4 ( π 2 3 3 ) = 4 π 2 3 12 \quad\displaystyle\sum_{n=1}^\infty \dfrac{1}{(1+2+\cdots+n)^2} \\=\displaystyle\sum_{n=1}^\infty \dfrac{1}{\left[\frac{n(n+1)}{2}\right]^2} \\= \displaystyle\sum_{n=1}^\infty \dfrac{4}{n^2(n+1)^2} \\= 4\left(\dfrac{\pi^2}{3}-3\right)=\dfrac{4\pi^2}{3}-12

I use my question as my reference.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...