Squared Trigonometric Functions

Algebra Level 2

θ \theta is an angle such that 18 0 < θ < 27 0 180^\circ < \theta < 270^\circ , and sin θ = 12 13 \sin \theta = \frac{-12}{13} . What is the value of

180 ( sin 2 θ 2 + cos 2 θ 2 + tan 2 θ 2 ) ? 180 \left( \sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} + \tan^2 \frac{\theta}{2} \right)?


The answer is 585.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Anish Shah
Dec 2, 2013

If sin θ = 12 13 \sin \theta = \frac{-12}{13} then using the identity, cos θ = 5 13 \cos\theta = \frac{-5}{13} . cos θ \cos \theta is negative because θ \theta is in the third quadrant.

180 ( sin 2 θ 2 + cos 2 θ 2 + tan 2 θ 2 ) 180(\sin^{2} \frac{\theta}{2} + \cos^{2} \frac{\theta}{2} + \tan^{2} \frac{\theta}{2}) = 180 ( 1 + tan 2 θ 2 ) = 18 ( sec 2 θ 2 ) =180(1 + \tan^{2} \frac{\theta}{2}) =18( \sec^{2} \frac{\theta}{2}) = 180 ( 1 cos 2 θ 2 ) = 180(\frac{1}{\cos^{2} \frac{\theta}{2}}) = 180 ( 2 1 + cos θ ) = 180(\frac{2}{1 + \cos \theta})

Now substitute the value and you get 585.

Kristina Silan
Dec 2, 2013

Solving for the value of cos 2 θ 2 \cos^2\frac{\theta}{2} ,

sin 2 θ + cos 2 θ = 1 \sin^2\theta + \cos^2\theta=1

( 12 13 ) 2 + cos 2 θ = 1 \Rightarrow(\frac{-12}{13})^2+\cos^2\theta=1

cos 2 θ = 25 169 \Rightarrow\cos^2\theta=\frac{25}{169}

cos θ = 5 13 \Rightarrow\cos\theta=\frac{-5}{13} , since 18 0 < θ < 27 0 180^{\circ} < \theta < 270^{\circ} .

cos 2 θ 2 = 1 + cos θ 2 \cos^2\frac{\theta}{2}=\frac{1+\cos\theta}{2}

cos 2 θ 2 = 1 + ( 5 13 ) 2 \cos^2\frac{\theta}{2}=\dfrac{1+(\dfrac{-5}{13})}{2}

cos 2 θ 2 = 4 13 \cos^2\frac{\theta}{2}=\frac{4}{13}

We can simplify the expression in the parenthesis:

180 ( 1 + tan 2 θ 2 ) 180(1+\tan^2\frac{\theta}{2}) , since sin 2 θ 2 + cos 2 θ 2 = 1 \sin^2\frac{\theta}{2}+\cos^2\frac{\theta}{2}=1

180 ( sec 2 θ 2 ) \Rightarrow 180(\sec^2\frac{\theta}{2})

180 ( 1 cos 2 θ 2 ) \Rightarrow 180(\dfrac{1}{\cos^2\dfrac{\theta}{2}})

180 ( 13 4 ) \Rightarrow 180(\frac{13}{4})

585 \Rightarrow \boxed{585} .

Otávio Augusto
Feb 7, 2014

>We know that:

> sin 2 β + cos 2 β = 1 \boxed{ \sin^{2} \beta + \cos^{2} \beta = 1}

> sin 2 θ 2 + cos 2 θ 2 = 1 \sin^{2} \frac{\theta}{2} + \cos^{2} \frac{\theta}{2} = 1 , thus 180 × ( 1 + tan 2 θ 2 ) 180 \times (1+ \tan^{2} \frac{\theta}{2})

> If sin θ = 12 13 \sin \theta = \frac{-12}{13} then cos θ = + 5 13 \cos \theta = ^{+}_{-}\frac{5}{13} but θ \theta belongs to the 3rd quadrant, so cos θ = 5 13 \cos \theta = \frac{-5}{13} ,

>and tan θ = 12 5 \tan \theta = \frac{12}{5}

>thinking in sum of arcs, we can see:

> tan 2 × β = 2 × tan β 1 tan 2 β \boxed{ \tan 2\times \beta = \frac{2 \times \tan \beta}{1 - \tan^{2} \beta} } applying in this case, tan 2 × θ 2 = 2 × tan θ 2 1 tan 2 θ 2 \tan 2\times \frac{\theta}{2} = \frac{2 \times \tan \frac{\theta}{2}}{1 - \tan^{2} \frac{\theta}{2}}

> replacing tan 2 × θ 2 \tan 2\times \frac{\theta}{2} for tan θ \tan \theta and tan θ 2 \tan \frac{\theta}{2} for "x", we got: 12 5 = 2 × x 1 x 2 \frac{12}{5}= \frac{2 \times x}{1 - x^{2}}

> solving, we have: 6 x 2 + 5 x 6 = 0 6x^{2} + 5x - 6 = 0 with x = 18 12 x^{'}=\frac{-18}{12} and x = 8 12 x^{''}=\frac{8}{12} , but θ 2 \frac{\theta}{2} belongs to the 2nd quadrant, so tan θ 2 < 0 \tan \frac{\theta}{2} < 0 thus tan θ 2 = 18 12 \boxed{ \tan \frac{\theta}{2} = \frac{-18}{12} }

> 180 × ( 1 + tan 2 θ 2 ) 180 \times (1+ \tan^{2} \frac{\theta}{2}) = 180 × ( 1 + ( 18 12 ) 2 ) 180 \times (1+ (\frac{-18}{12})^2) = 585 \boxed{585}

Nice solution

TIRTHANKAR GHOSH - 7 years, 1 month ago
Antonio Quinones
Dec 1, 2013

sin²ϕ + cos²ϕ = 1,
sinϴ=-12/13 (given) => thus cosϴ = -5/13 (third quadrant)

tanϴ/2 = sinϴ/(1+cosϴ) => half angle identity.
Therefore tanϴ/2 ={ (-12/13) ÷( 13/13 + -5/13)} = (-12/13) ÷ (8/13) = -12/8

tan²ϴ = ( -12/8) = 144/64

180(sin²ϴ/2 + cos²ϴ/2 + tan² ϴ/2) = 180(1 + tan² ϴ/2) = 180(1 + 144/64)

180(64/64 + 144/64) = 180(208/64) = 180(3.25) = 585

A.Quinones Cidra, Puerto Rico

Andre Yudhistika
Dec 30, 2013

the angle is ( a )in 3th quadrant so, cos a has negative value cos a= sqrt(1-sin^2 a)= -5/13

use sin^2 a/2=(1-cosa)/2

cos^2 a/2= (1+cos a)/2 and tan^2 a/2= (1-cos a)/(1+cos a)

you will find 585 ^^

If (theta) is in third quadrant, then cos (theta) is negative. Cos(theta) = -5/13.

Using trigonometric identities, sin (theta/2) = 3sqrt(13)/13

cos (theta/2) = 2sqrt(13)/13

tan (theta/2) = -3/2

Squaring them gives 9/13, 4/13, and 9/4 respectively. Adding them and multiplying to 18 gives 585.

Gurpreet Bal
Dec 7, 2013

Sin^{2} \frac{/theta}{2} + Cos^{2} \frac{/theta}{2} =1 Tan^{2} \frac{/theta}{2} = /frac{1-Cos/theta} {1+Cos/theta}

Hamit Hood
Dec 6, 2013

if sin θ is -ve value it's mean that it's in third or forth quarter but we have a condition that said 180 < θ < 270 ... that's mean θ is in third one when we get the angle sin^{-1} ( -12/13) it will be = \boxed{-67.38}

the -ve mean third quarter and that mean the angle = 67.38+180 = \boxed{247.38}

247.38/2 = \boxed{123.69}

our equation will be ... 180[sin^{2} 123.69 + cos^{2} 123.69 + tan^{2} 123.69 ] = 585

The value of THITA is Sine inverse (-12/13). But it will have to be within 180<thita<270. So it will be approximately 247.3801351. Then put into equation. Get the answer 585 :)

Andi An
Dec 1, 2013

sinθ=-12/13 then cos θ=-5/13

180(sin^2θ/2+cos^2θ/2+tan^2θ/2)=

180(1+tan^2θ/2)=180sec^θ/2

180(1/(1+cosθ)/2)=360/(1+cosθ)=

360/(1-5/13)=585

But why is it cos θ 5 13 \cos \theta \frac{-5}{13} and not 5 13 \frac {5}{13} ? You need to explain why.

David Ma - 7 years, 6 months ago

Log in to reply

For your latex syntax to display correctly, you need to place it within \ ( \ ) \backslash( \, \backslash) . I've made an edit to your post, so you can check how to use it.

Note that your brackets must also be the same. You previously had {5) (13}, which I've changed to {5}{13}.

Calvin Lin Staff - 7 years, 6 months ago

cosθ=-5/13 cause 180<θ<270. Thanks for correction!

Andi An - 7 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...