Squared Unit Squares!

Denote U ( s ) U(s) as a function of the maximum number of unit squares that can be formed in a grid with semiperimeter s s where s Z + { 1 } s\in \mathbb Z^+\setminus\{1\} (for example, U ( 6 ) = 9 U(6)=9 ).

It is known that U ( U ( x ) ) U(U(x)) is a perfect square, which of the following cannot be a value of x x ?

Clarification: Unit square is a square with side 1.


This is one part of Quadrilatorics .
115 2 1153 + 115 4 1155 1152^{1153}+1154^{1155} sixteen 115 2 1153 + 115 3 1154 1152^{1153}+1153^{1154} 115 4 1155 + 115 6 1157 1154^{1155}+1156^{1157} 115 4 1155 + 115 5 1156 1154^{1155}+1155^{1156} 115 3 1154 + 115 5 1156 1153^{1154}+1155^{1156}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kenneth Tan
Jul 13, 2018

First of all, I claim that U ( s ) = { s 2 4 , if s is even s 2 1 4 , if s is odd U(s)=\begin{cases}\dfrac{s^2}{4},\quad\text{if }s\text{ is even} \\ \dfrac{s^2-1}{4},\quad\text{if }s\text{ is odd}\end{cases}

Here is a sketch of the proof, you can find the full details of this proof in my solution to I Want Me More Unit Squares , if you've already seen it, you can safely skip this part. :D

Proof:

Suppose the width of the grid is a a , the height of the grid is b b , and the semiperimeter of the grid is s = a + b s=a+b . Then the number of unit squares in this a × b a\times b grid is a b ab .

If s s is even , either a s 2 a\geqslant\frac{s}{2} , b s 2 b\leqslant\frac{s}{2} or a s 2 a\leqslant\frac{s}{2} , b s 2 b\geqslant\frac{s}{2} . Without loss of generality, let's suppose that a = s 2 + d a=\frac{s}{2}+d , b = s 2 d b=\frac{s}{2}-d ( d < s 2 , d Z + { 0 } ) (d<\frac{s}{2},\,d\in\mathbb{Z^+}\cup\{0\}) . Then a b = ( s 2 + d ) ( s 2 d ) = s 2 4 d 2 s 2 4 ab=\left(\frac{s}{2}+d\right)\left(\frac{s}{2}-d\right)=\frac{s^2}{4}-d^2\leqslant\frac{s^2}{4} .

If s s is odd , either a s + 1 2 a\geqslant\frac{s+1}{2} , b s 1 2 b\leqslant\frac{s-1}{2} or a s 1 2 a\leqslant\frac{s-1}{2} , b s + 1 2 b\geqslant\frac{s+1}{2} . Without loss of generality, let's suppose that a = s + 1 2 + d a=\frac{s+1}{2}+d , b = s 1 2 d b=\frac{s-1}{2}-d ( d < s 1 2 , d Z + { 0 } ) (d<\frac{s-1}{2},\,d\in\mathbb{Z^+}\cup\{0\}) . Then a b = ( s + 1 2 + d ) ( s 1 2 d ) = s 2 1 4 d 2 s 2 1 4 ab=\left(\frac{s+1}{2}+d\right)\left(\frac{s-1}{2}-d\right)=\frac{s^2-1}{4}-d^2\leqslant\frac{s^2-1}{4} .

Therefore, U ( s ) = { s 2 4 , if s is even s 2 1 4 , if s is odd U(s)=\begin{cases}\dfrac{s^2}{4},\quad\text{if }s\text{ is even} \\ \dfrac{s^2-1}{4},\quad\text{if }s\text{ is odd}\end{cases} . _\square

Now, using the formula we have, we start by listing out some values to see if we can find any patterns:

x U ( x ) U ( U ( x ) ) 2 1 undefinedillion = 100 0 undefined 3 2 1 4 4 4 5 6 9 6 9 20 7 12 36 8 16 64 9 20 100 10 25 156 11 30 225 12 36 324 13 42 441 14 49 600 \begin{array}{|c|c|c|} \hline x & U(x) & U(U(x)) \\ \hline 2 & 1 & \text{undefinedillion}=1000^{\text{undefined}} \\ \hline 3 & 2 & 1 \\ \hline 4 & 4 & 4 \\ \hline 5 & 6 & 9 \\ \hline \color{orchid}6 & 9 & \color{orchid}20\\ \hline 7 & 12 & 36 \\ \hline 8 & 16 & 64 \\ \hline 9 & 20 & 100 \\ \hline \color{orchid}10 & 25 & \color{orchid}156 \\ \hline 11 & 30 & 225 \\ \hline 12 & 36 & 324 \\ \hline 13 & 42 & 441 \\ \hline \color{orchid}14 & 49 & \color{orchid}600 \\ \hline \end{array}

Hey! We notice that if x = 4 k + 2 x=4k+2 ( k Z + ) (k\in\mathbb Z^+) , then U ( U ( x ) ) U(U(x)) breaks the perfect square pattern! Let's try to prove it!

For any integer x 2 x\geqslant2 , x 0 , ± 1 , 2 ( m o d 4 ) x\equiv 0,\,\pm1,\,2\pmod4 , that means x x can be expressed either as 4 k 4k , 4 k ± 1 4k\pm1 or 4 k + 2 4k+2 .

If x = 4 k x=4k , then since 4 k 4k is even, U ( 4 k ) = ( 4 k ) 2 4 = 4 k 2 U(4k)=\frac{(4k)^2}{4}=4k^2 is even, thus U ( U ( 4 k ) ) = U ( 4 k 2 ) = ( 4 k 2 ) 2 4 = ( 2 k 2 ) 2 U(U(4k))=U(4k^2)=\frac{(4k^2)^2}{4}=(2k^2)^2 is a perfect square.

If x = 4 k ± 1 x=4k\pm1 , then since 4 k ± 1 4k\pm1 is odd, U ( 4 k ± 1 ) = ( 4 k ± 1 ) 2 1 4 = 4 k 2 ± 4 k = 4 k ( k ± 1 ) U(4k\pm1)=\frac{(4k\pm1)^2-1}{4}=4k^2\pm4k=4k(k\pm1) is even, thus U ( U ( 4 k ± 1 ) ) = U ( 4 k ( k ± 1 ) ) = ( 4 k ( k ± 1 ) ) 2 4 = ( 2 k ( k ± 1 ) ) 2 U(U(4k\pm1))=U(4k(k\pm1))=\frac{(4k(k\pm1))^2}{4}=(2k(k\pm1))^2 is also a perfect square.

If x = 4 k + 2 x=4k+2 , then since 4 k + 2 4k+2 is even, U ( 4 k + 2 ) = ( 4 k + 2 ) 2 4 = ( 2 k + 1 ) 2 U(4k+2)=\frac{(4k+2)^2}{4}=(2k+1)^2 is odd, thus U ( U ( 4 k + 2 ) ) = U ( ( 2 k + 1 ) 2 ) = ( 2 k + 1 ) 2 1 4 = k 2 + k = k ( k + 1 ) U(U(4k+2))=U((2k+1)^2)=\frac{(2k+1)^2-1}{4}=k^2+k=k(k+1) is not a perfect square. Whoopsy daisy!

If x = sandwich x=\text{sandwich} , then... oh wait... nevermind.

Anyway, we've just showed that if x = 4 k + 2 x=4k+2 , in other words if x 2 ( m o d 4 ) x\equiv2\pmod4 , then U ( U ( x ) ) U(U(x)) cannot be a perfect square! Woohoo! Progress!

Let's now take a look at the answer options, we notice some repeated numbers that we can use for our advantage. Since 115 2 1153 0 ( m o d 4 ) 115 3 1154 1 1154 = 1 ( m o d 4 ) 115 4 1155 0 ( m o d 4 ) 115 5 1156 ( 1 ) 1156 = 1 ( m o d 4 ) 115 6 1157 0 ( m o d 4 ) 1152^{1153}\equiv0\pmod4 \\ 1153^{1154}\equiv1^{1154}=1\pmod4 \\ 1154^{1155}\equiv0\pmod4 \\ 1155^{1156}\equiv(-1)^{1156}=1\pmod4 \\ 1156^{1157}\equiv0\pmod4

The only option that gives a remainder of 2 when divided by 4 is 115 3 1154 + 115 5 1156 1153^{1154}+1155^{1156} , because 115 3 1154 + 115 5 1156 1 + 1 = 2 ( m o d 4 ) 1153^{1154}+1155^{1156}\equiv1+1=2\pmod4 .

By the way, the option "sixteen", otherwise famously known as 16 16 , is obviously not the answer since 16 0 ( m o d 4 ) 16\equiv0\pmod4 .

U ( s ) = s 2 × s 2 U(s)=\lfloor \frac{s}{2} \rfloor \times \lceil \frac{s}{2} \rceil

here are facts

1- If 2 s 2 \mid s , then U ( s ) = s 2 4 U(s)=\frac{s^2}{4} is a perfect square.

2-If s s is odd, it would be of form U ( s ) = n × ( n + 1 ) U(s)=n \times (n+1) , for some integer n n .

Now assume s s is odd. Then U ( s ) = n × ( n + 1 ) U(s)=n \times (n+1) and either n n or n + 1 n+1 is even ( n × ( n + 1 ) = 2 k n \times (n+1)=2k ). Therefore, U ( n × ( n + 1 ) ) = U ( 2 k ) = x 2 U(n \times (n+1))=U(2k)=x^2 , according to fact (1).

If s s is even, then U ( s ) = s 2 4 U(s)=\frac{s^2}{4} . If s 2 \frac{s}{2} is not further divisible by 2 2 , i.e. 4 s 4 \nmid s , then U ( U ( s ) ) = n × ( n + 1 ) U(U(s))=n \times (n+1) , for some n n (fact (2)). since two consecutive integers are coprimes, they cannot make perfect squares. On the other hand, if 4 s 4 \mid s , then we use rule (1), two times, to deduce that U ( U ( s ) ) U(U(s)) is a square.

Based on the above argument, U ( U ( s ) ) U(U(s)) is a perfect square, if and only if either s s is odd or s s divisible by 4 4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...