Squares and Circles!!

Level pending

In square A B C D ABCD with side length a a , E E is a midpoint of B C \overline{BC} , and the red, green and pink circles with radii r , r 2 r, r_{2} and r 3 r_{3} are tangent to E D \overline{ED} and diagonal A C \overline{AC} as shown above and the red, green and pink circles are tangent to A D , B C \overline{AD}, \overline{BC} and C D \overline{CD} respectively.

If r + r 2 + r 3 a = α β β + λ β + β β λ ( α + β β + λ ) ( α + β + λ ) \dfrac{r + r_{2} + r_{3}}{a} = \dfrac{\alpha * \beta^{\beta} + \lambda\sqrt{\beta} + \beta^{\beta}\sqrt{\lambda}}{(\alpha + \beta\sqrt{\beta} + \sqrt{\lambda})(\alpha + \sqrt{\beta} + \sqrt{\lambda})} , where α , β \alpha,\beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 2, 2021

For red circle:

For A C : y = x \overline{AC}: y = x and m E D = 2 y = 2 x + 2 a x = y = 2 a 3 m_{\overline{ED}} = -2 \implies y = -2x + 2a \implies x = y = \dfrac{2a}{3}

G ( 2 a 3 , 2 a 3 ) A G = 2 2 3 a \implies G(\dfrac{2a}{3},\dfrac{2a}{3}) \implies \overline{AG} = \dfrac{2\sqrt{2}}{3}a and G D = 5 3 a \overline{GD} = \dfrac{\sqrt{5}}{3}a

A A G D = 1 2 ( a ) ( 2 a 3 ) = a 2 3 = \implies A_{\triangle{AGD}} = \dfrac{1}{2}(a)(\dfrac{2a}{3}) = \dfrac{a^2}{3} = a r 2 ( 3 + 2 2 + 5 3 ) \dfrac{ar}{2}(\dfrac{3 + 2\sqrt{2} + \sqrt{5}}{3}) \implies

2 a 2 ( 3 + 2 2 + 5 ) a r = 0 a ( 2 a ( 3 + 2 2 + 5 ) r ) = 0 2a^2 - (3 + 2\sqrt{2} + \sqrt{5})ar = 0 \implies a(2a - (3 + 2\sqrt{2} + \sqrt{5})r) = 0 and

a 0 r = 2 a 5 + 2 2 + 3 a \neq 0 \implies\boxed{r = \dfrac{2a}{\sqrt{5} + 2\sqrt{2} + 3}}

For green circle:

h E G C = a 2 a 2 = a 3 , E G = 5 6 a h_{\triangle{EGC}} = a - \dfrac{2a}{2} = \dfrac{a}{3}, \overline{EG} = \dfrac{\sqrt{5}}{6}a and G C = 2 3 a \overline{GC} = \dfrac{\sqrt{2}}{3}a \implies

A E G C = 1 2 ( a 2 ) ( a 3 ) = a 2 12 = A_{\triangle{EGC}} = \dfrac{1}{2}(\dfrac{a}{2})(\dfrac{a}{3}) = \dfrac{a^2}{12} = 1 2 ( a r 2 ) ( 5 + 2 2 + 3 6 ) \dfrac{1}{2}(a r_{2})(\dfrac{\sqrt{5} + 2\sqrt{2} + 3}{6}) \implies

a ( a ( 5 + 2 2 + 3 ) r 2 ) = 0 a(a - (\sqrt{5} + 2\sqrt{2} + 3)r_{2}) = 0 and a 0 r 2 = a 5 + 2 2 + 3 a \neq 0 \implies \boxed{r_{2} = \dfrac{a}{\sqrt{5} + 2\sqrt{2} + 3}}

Similarly using the same method for the pink circle we have:

r 3 = a 5 + 2 + 3 \boxed{r_{3} = \dfrac{a}{\sqrt{5} + \sqrt{2} + 3}}

r + r 2 + r 3 a = 12 + 5 2 + 4 5 ( 3 + 2 2 + 5 ) ( 3 + 2 + 5 ) = \implies \dfrac{r + r_{2} + r_{3}}{a} =\dfrac{12 + 5\sqrt{2} +4\sqrt{5}}{(3 + 2\sqrt{2} + \sqrt{5})(3 + \sqrt{2} + \sqrt{5})} =

3 2 2 + 5 2 + 2 2 5 ( 3 + 2 2 + 5 ) ( 3 + 2 + 5 ) = \dfrac{3 * 2^2 + 5\sqrt{2} + 2^2\sqrt{5}}{(3 + 2\sqrt{2} + \sqrt{5})(3 + \sqrt{2} + \sqrt{5})} = α β β + λ β + β β λ ( α + β β + λ ) ( α + β + λ ) \dfrac{\alpha * \beta^{\beta} + \lambda\sqrt{\beta} + \beta^{\beta}\sqrt{\lambda}}{(\alpha + \beta\sqrt{\beta} + \sqrt{\lambda})(\alpha + \sqrt{\beta} + \sqrt{\lambda})}

α + β + λ = 10 \implies \alpha + \beta + \lambda = \boxed{10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...