Squares and Inverses!

Algebra Level 2

If x 2 + 1 x 2 = 47 x^2 + \dfrac {1}{x^2} = 47 , then what is x 4 + 1 x 4 x^4 + \dfrac {1}{x^4} ?


The answer is 2207.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

If we square x 2 + 1 x 2 x^2 + \frac {1}{x^2} , then we get x 4 + 1 x 4 x^4 + \frac {1}{x^4} + 2, which is equal to 47 squared, or 2209. All we do now is subtract 2 to get 2207 \boxed{2207} .

Munem Shahriar
Aug 30, 2017

Solution 1:

x 2 + 1 x 2 = 47 x^2 + \dfrac{1}{x^2} = 47

( x 2 + 1 x 2 ) 2 = ( 47 ) 2 \Rightarrow \large \left(x^2 + \dfrac{1}{x^2} \right)^2 = (47)^2

x 4 + 2 + 1 x 4 = 2209 \Rightarrow x^4 + 2+ \dfrac{1}{x^4} = 2209

x 4 + 1 x 4 = 2207 \Rightarrow x^4 + \dfrac{1}{x^4} = \boxed{2207}

Solution 2:

x 4 + 1 x 4 x^4 + \dfrac{1}{x^4}

= ( x 2 ) 2 + ( 1 x 2 ) 2 = \large \left(x^2\right)^2 + \large \left(\dfrac{1}{x^2}\right)^2

= ( x 2 + 1 x 2 ) 2 2 x 2 1 x 2 = \large \left(x^2 + \dfrac{1}{x^2}\right)^2 - 2 \cdot x^2 \cdot \dfrac{1}{x^2}

= ( 47 ) 2 2 = \large \left(47\right)^2 -2

= 2207 = \boxed{2207}

Chew-Seong Cheong
May 27, 2017

x 2 + 1 x 2 = 47 ( x 2 + 1 x 2 ) 2 = 4 7 2 x 4 + 2 + 1 x 4 = 2209 x 4 + 1 x 4 = 2207 \begin{aligned} x^2+\frac 1{x^2} & = 47 \\ \left(x^2+\frac 1{x^2} \right)^2 & = 47^2 \\ x^4+2+\frac 1{x^4} & = 2209 \\ \implies x^4+\frac 1{x^4} & = 2207 \end{aligned}

Majed Kalaoun
Jun 3, 2017

x 2 x^2 + 1 x 2 = 47 \dfrac{1}{x^2}=47

( x 2 + 1 x 2 ) 2 (x^2+\dfrac{1}{x^2})^2 = 4 7 2 =47^2

x 4 + 2 + 1 x 4 x^4+2+\dfrac{1}{x^4} = 2209 =2209

x 4 + 1 x 4 x^4+\dfrac{1}{x^4} = 2207 =2207

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...