Squares and Roots II

Algebra Level 1

Using following relation from the last problem :

n n = m 1 m = n \frac { \sqrt { n } }{ n } =m\quad \Rightarrow \quad \frac { 1 }{ m } =\sqrt { n } ,

if m is 1 3 \sqrt { \frac { 1 }{ 3 } } , find n .

2 3 \sqrt { \frac { 2}{3 } } 4 3 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

n n = 1 3 \frac { \sqrt { n } }{ n } =\sqrt { \frac { 1 }{ 3 } }

n n 2 = 1 3 \frac { n }{ { n }^{ 2 } } =\frac { 1 }{ 3 }

n 2 = 3 n { n }^{ 2 }=3n

n 2 n = 3 n n \frac { { n }^{ 2 } }{ n } =\frac { 3n }{ n }

n = 3 n=3

Nagendra Sistla
Apr 13, 2014

n=3

Kaveesh Dashora
Jan 18, 2015

1 m = n \frac { 1 }{ m } =\sqrt { n }

1 1 3 = n \frac { 1 }{ \sqrt { \frac { 1 }{ 3 } } } =\sqrt { n }

squaring both sides

1 1 3 = n \quad \frac { 1 }{ \frac { 1 }{ 3 } } = n\quad

n = 3 n = 3

Saurabh Mallik
Apr 26, 2014

According to question:

n n = m , m = 1 3 \frac{\sqrt{n}}{n} = m, m=\sqrt{\frac{1}{3}}

n n = 1 3 \frac{\sqrt{n}}{n} = \sqrt{\frac{1}{3}}

Squaring both sides:

n n 2 = 1 3 \frac{n}{n^{2}} = \frac{1}{3}

n 2 = 3 n {n^{2}} = 3n

n 2 n = 3 n n \frac{n^{2}}{n} = \frac{3n}{n}

n = 3 n = 3

or

1 m = n , m = 1 3 \frac{1}{m} = \sqrt{n}, m=\sqrt{\frac{1}{3}}

1 1 3 = n \frac{1}{\sqrt{\frac{1}{3}}} = \sqrt{n}

3 = n \sqrt{3} = \sqrt{n}

Squaring both sides:

n = 3 n = 3

Thus, n = 3 n = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...