Squares and Roots III

Algebra Level 1

Look:

2 2 × 3 3 = a b \frac { \sqrt { 2 } }{ 2 } \times \frac { \sqrt { 3 } }{ 3 } =\sqrt { \frac { a }{ b } }

a and b are two integers forming an irreducible fraction. Find a+b.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

2 2 × 3 3 = a b \frac { \sqrt { 2 } }{ 2 } \times \frac { \sqrt { 3 } }{ 3 } =\sqrt { \frac { a }{ b } }

2 × 3 2 × 3 = a b \frac { \sqrt { 2\times 3 } }{ 2\times 3 } =\sqrt { \frac { a }{ b } }

6 6 = a b \frac { \sqrt { 6 } }{ 6 } =\sqrt { \frac { a }{ b } }

6 36 = 1 6 = a b \frac { 6 }{ 36 } =\frac { 1 }{ 6 } =\frac { a }{ b }

a = 1 a=1

b = 6 b=6

a + b = 7 a+b=7

Isso garoto vá em frente...

Heder Oliveira Dias - 7 years, 1 month ago

good

Harapriya Nanda - 7 years, 1 month ago

Be simple as u can be. Very nice answer.

Shahzad Ahmad - 7 years, 1 month ago
Saurabh Mallik
Apr 26, 2014

2 2 × 3 3 = a b \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3} = \sqrt{\frac{a}{b}}

2 × 3 2 × 3 = a b \frac{\sqrt{2} \times \sqrt{3}}{2 \times 3} = \sqrt{\frac{a}{b}}

2 × 3 2 × 3 = a b \frac{\sqrt{{2} \times {3}}}{2 \times 3} = \sqrt{\frac{a}{b}}

6 6 = a b \frac{\sqrt{6}}{6} = \sqrt{\frac{a}{b}}

6 6 × 6 = a b \frac{\sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \sqrt{\frac{a}{b}}

1 6 = a b \frac{1}{\sqrt{6}} = \sqrt{\frac{a}{b}}

1 6 = a b \sqrt{\frac{1}{6}} = \sqrt{\frac{a}{b}}

Squaring both sides:

a b = 1 6 \frac{a}{b} = \frac{1}{6}

Thus, a = 1 a = 1 and b = 6 b = 6

So, the answer is: a + b = 1 + 6 = 7 a + b = 1 + 6 = \boxed{7}

product of dose two values give rise to the value equalent to sqrt(1/6)....whose addition give rise to 7

Nagendra Sistla
Apr 13, 2014

I mean 6^1/2/6=(a/b)^1/2, sq on both sides we get, 1/6=a/b, =>a=1,b=6 :. a+b=1+6=7.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...