Squares are complete?

Algebra Level 1

Find the roots of the quadratic equation

6 x 2 31 x + 35 = 0. 6x^2-31x+35=0.

5 2 , 7 3 \dfrac{5}{2} , \dfrac{7}{3} 1 2 , 35 3 \dfrac{1}{2} , \dfrac{35}{3} 35 2 , 1 3 \dfrac{35}{2} , \dfrac{1}{3} 7 2 , 5 3 \dfrac{7}{2} , \dfrac{5}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Saurabh Mallik
Sep 25, 2014

We can use quadratic equation to solve this question.

In this quadratic equation: 6 x 2 31 x + 35 = 0 6x^{2}-31x+35=0 , we take:

a = 6 , b = 31 , c = 35 a=6, b=-31, c=35

= b + b 2 4 a c 2 a =\frac{-b+-\sqrt{b^{2}-4ac}}{2a}

= ( 31 ) + ( 31 ) 2 4 × 6 × 35 2 × 6 =\frac{-(-31)+-\sqrt{(-31)^{2}-4\times6\times35}}{2\times6}

= 31 + 961 840 12 =\frac{31+-\sqrt{961-840}}{12}

= 31 + 121 12 =\frac{31+-\sqrt{121}}{12}

= 31 + 11 12 =\frac{31+-11}{12}

= 31 + 11 12 =\frac{31+11}{12} and 31 11 12 \frac{31-11}{12}

= 42 12 =\frac{42}{12} and 20 12 \frac{20}{12}

= 7 2 =\frac{7}{2} and 5 3 \frac{5}{3}

So, the roots of the equation are: 7 2 \frac{7}{2} and 5 3 \frac{5}{3}

Thus, the answer is: 7 2 , 5 3 \boxed{\frac{7}{2}, \frac{5}{3}}

So this is in the "completing the square section" so using that method:
6 x 2 31 x + 35 = 0 6x^2-31x+35=0
Divide by 6 for both sides. x 2 31 / 6 x + 35 / 6 = 0 x^2-31/6x+35/6=0
Take the constant and move it to the RHS.
x 2 31 / 6 x = 35 / 6 x^2-31/6x= -35/6
Take half of 31 / 6 -31/6 and add it to both sides. x 2 31 / 6 x + 961 / 144 = 35 / 6 + 961 / 144 x^2-31/6x+961/144=-35/6+961/144
Write the perfect square on the left. ( x 31 / 12 ) 2 = 121 / 144 (x-31/12)^2=121/144
Take the square root of both sides. x 31 / 12 = 121 / 144 x-31/12=\sqrt {121/144}
Add the constant on the left to both sides to get: x = 31 / 12 ± 121 / 144 x=31/12\pm \sqrt {121/144}
Simplify to get x = 5 / 3 , 7 / 2 x= \boxed {5/3, 7/2}

J Franklin - 5 years, 3 months ago

The fastest way to solve an MCQ is to add the two numbers and check if it equals -b/a

i also did same thing vieta formula

Mardokay Mosazghi - 6 years, 8 months ago

Log in to reply

Actually this question was made bcoz I saw no question to include in,brilliant wiki where I wrote articles,,

Aditya Raut - 6 years, 8 months ago
Sualeh Asif
Sep 26, 2014

I solved it with the factorization method : 6 ϰ 2 31 ϰ + 35 = 0 6 ϰ 2 10 ϰ 21 ϰ + 35 = 0 (by breaking the middle term into 2 parts) 2 ϰ ( 3 ϰ 5 ) 7 ( 3 ϰ 5 ) = 0 (taking a common term) ( 2 ϰ 7 ) ( 3 ϰ 5 ) = 0 Now one of the two terms will be equal to zero for the answer to be zero 2 ϰ 7 = 0 ; 3 ϰ 5 = 0 2 ϰ = 7 ; 3 ϰ = 5 ϰ = 7 2 ; ϰ = 5 3 7 2 ; 5 3 \begin{array}{lr} \text{I solved it with the factorization method :}& \\ 6\varkappa ^{2}-31\varkappa +35 =0& \\ 6\varkappa ^{2}- 10\varkappa -21\varkappa +35 =0 \text{(by breaking the middle term into 2 parts)}& \\ 2\varkappa (3\varkappa -5) -7(3\varkappa -5) =0 \text{(taking a common term)}& \\ (2\varkappa -7)(3\varkappa -5) =0& \\ \text{Now one of the two terms will be equal to zero for the answer to be zero}& \\ 2\varkappa -7 =0 ; 3\varkappa -5 =0& \\ 2\varkappa =7 ; 3\varkappa = 5& \\ \varkappa = \frac{7}{2} ; \varkappa = \frac{5}{3}& \\ \boxed{\frac {7}{2}} ;\boxed {\frac {5}{3}} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...