Squares Galore

Algebra Level 5

x 1 + 4 x 2 + 9 x 3 + 16 x 4 + 25 x 5 + 36 x 6 + 49 x 7 = 1 4 x 1 + 9 x 2 + 16 x 3 + 25 x 4 + 36 x 5 + 49 x 6 + 64 x 7 = 10 16 x 1 + 25 x 2 + 36 x 3 + 49 x 4 + 64 x 5 + 81 x 6 + 100 x 7 = 100 \begin{array} { r r r r r r r r l} x_1 &+ 4x_2 &+ 9x_3 &+ 16x_4 &+25x_5 &+ 36x_6& + 49x_7 &=& 1 \\ 4x_1 &+ 9x_2 &+ 16x_3 &+ 25x_4 &+ 36x_5 &+ 49x_6 &+ 64x_7 &=& 10 \\ 16x_1 &+ 25x_2 &+ 36x_3 &+ 49x_4 &+ 64x_5 &+ 81x_6 &+ 100x_7 &=& 100 \\ \end{array}

Given that x 1 x_1 , x 2 x_2 , \ldots x 7 x_7 are real numbers that satisfy the system of equations above.

What is the value of 9 x 1 + 16 x 2 + 25 x 3 + 36 x 4 + 49 x 5 + 64 x 6 + 81 x 7 9x_1 + 16x_2 + 25x_3 + 36x_4 + 49x_5 + 64x_6 + 81x_7 ?


The answer is 43.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Michael Kural
May 20, 2014

Let P ( x ) = x 1 ( x + 1 ) 2 + x 2 ( x + 2 ) 2 + + x 7 ( x + 7 ) 2 P(x)= x_1(x+1)^2+x_2(x+2)^2+\cdots+x_7(x+7)^2 Note that P ( x ) P(x) is a quadratic polynomial. Then the given conditions are simply P ( 0 ) = 1 P(0)=1 , P ( 1 ) = 10 P(1)=10 , and P ( 3 ) = 100 P(3)=100 . Then by the Lagrange Interpolation Formula P ( 2 ) = 1 ( 2 1 ) ( 2 3 ) ( 0 1 ) ( 0 3 ) + 10 ( 2 0 ) ( 2 3 ) ( 1 0 ) ( 1 3 ) + 100 ( 2 0 ) ( 2 1 ) ( 3 0 ) ( 3 1 ) = 43 P(2)=1\cdot \frac{(2-1)(2-3)}{(0-1)(0-3)}+10\cdot\frac{(2-0)(2-3)}{(1-0)(1-3)}+100\cdot \frac{(2-0)(2-1)}{(3-0)(3-1)}=\boxed{43}

This is a very nice solution!

All solutions boil down to finding the relationship, and realizing that ( n + 2 ) 2 = 1 3 n 2 + ( n + 1 ) 2 + 1 3 ( n + 2 ) 2 (n+2)^2 = -\frac {1}{3} n^2 + (n+1)^2 + \frac {1}{3} (n+2)^2 .

Calvin Lin Staff - 7 years ago
Jaydeep Singh
May 20, 2014

The key here is to flip your idea of what you call the variables. Instead of seeing x as the variable, consider the coefficients. For example, we can rewrite the first equation as:

( 1 ) 2 ( x 1 ) + 2 2 ( x 2 ) + . . . . + 7 2 ( x 7 ) = 1. (1)^2(x1) + 2^2 (x2) + .... + 7^2 (x7) = 1. This is more striking if we write expand the coefficients as functions of the first term:

( 1 ) 2 ( x 1 ) + ( 1 + 1 ) 2 ( x 2 ) + ( 1 + 2 ) x 3 + . . . . . + ( 1 + 6 ) 2 ( x 7 ) = 1. (1)^2 (x1) + (1+1)^2 (x2) + (1+2) x^3 +..... + (1+6)^2 (x7) = 1.

Likewise, the other two can be rewritten with as

( 2 ) 2 ( x 1 ) + ( 2 + 1 ) 2 ( x 2 ) + ( 2 + 2 ) ( x 3 ) + . . . + ( 2 + 6 ) 2 ( x 7 ) = 10 , (2)^2 (x1) + (2+1)^2 (x2) + (2+2) (x3) + ... + (2+6)^2 (x7) = 10,

( 4 ) 2 ( x 1 ) + ( 4 + 1 ) 2 ( x 2 ) + ( 4 + 3 ) 2 ( x 3 ) + . . . . . + ( 4 + 6 ) 2 ( x 7 ) = 100. (4)^2 (x1) + (4+1)^2(x2) + (4+3)^2(x3) + ..... + (4+6)^2(x7) = 100.

Now, let x 1 , x 2 , x 7 x_1, x_2, \ldots x_7 be fixed, and consider the polynomial

( i ) 2 ( x 1 ) + ( i + 1 ) 2 ( x 2 ) + . . . . . . . + ( i + 6 ) 2 ( x 7 ) = f ( i ) (i)^2 (x1) + (i+1)^2 (x2) + ....... + (i+6)^2(x7) = f(i) . Because the left side is a quadratic in i i (with constant coefficients), and we are given three values of the quadratic, by the identity theorem the polynomial is uniquely determined. Thus, the right side is of degree two, and we can easily find f ( i ) = 12 i 2 27 i + 16 f(i) = 12i^2 - 27i + 16 . Thus, our general polynomial, true for any value of i, is ( i ) 2 ( x 1 ) + ( i + 1 ) 2 ( x 2 ) + . . . . . . . + ( i + 6 ) 2 ( x 7 ) = 12 x 2 27 x + 16 (i)^2 (x1) + (i+1)^2 (x2) + ....... + (i+6)^2(x7) = 12x^2 - 27x + 16 . The value we desire is seen to be i = 3 i=3 , so plugging this in to the right side, we get 12 ( 9 ) 27 ( 3 ) + 16 = 43 12(9) - 27(3) + 16 = 43

This is a great explanation which quickly generalizes the problem, instead of having to make the chance observation that "the third equation plus three times the second equation is equation to equal to three times the unknown expression plus the first equation".

Calvin Lin Staff - 7 years ago
Dae Hyun Nam
May 20, 2014

1+3+\ldots+ 2 k 1 2k-1 = k^2 Let z be sought value. Eq3 - Eq1 yields 3\cdot 5 x 1 + 7 x 2 + + 17 x 7 5x_1 +7x_2 +\ldots + 17 x_7 = 99 hence \cdot 5 x 1 + 7 x 2 + + 17 x 7 5x_1 +7x_2 +\ldots + 17 x_7 =33 Since Eq2 + \cdot 5 x 1 + 7 x 2 + + 17 x 7 5x_1 +7x_2 +\ldots + 17 x_7 = z we obtain 10 + 33 = z

Rabeeb Ibrat
May 20, 2014
  • m = 1 7 m 2 x m = 1 \displaystyle \sum_{m=1}^7 m^2 x_{m}=1 ;
  • m = 1 7 ( m + 1 ) 2 x m = 10 \displaystyle \sum_{m=1}^7 (m+1)^2 x_{m}=10 ;
  • m = 1 7 ( m + 3 ) 2 x m = 100 \displaystyle \sum_{m=1}^7 (m+3)^2 x_{m}=100 ;
  • m = 1 7 ( m + 2 ) 2 x m = ? \displaystyle \sum_{m=1}^7 (m+2)^2 x_{m}=?
  • What we have to solve is:
  • p m = 1 7 m 2 x m + q m = 1 7 ( m + 1 ) 2 x m + r m = 1 7 ( m + 3 ) 2 x m = s m = 1 7 ( m + 2 ) 2 x m p \displaystyle \sum_{m=1}^7 m^2 x_{m} + q \displaystyle \sum_{m=1}^7 (m+1)^2 x_{m} + r \displaystyle \sum_{m=1}^7 (m+3)^2 x_{m} = s \displaystyle \sum_{m=1}^7 (m+2)^2 x_{m} .........(1)
  • \Leftrightarrow m = 1 7 p m 2 x m + m = 1 7 q ( m + 1 ) 2 x m + m = 1 7 r ( m + 3 ) 2 x m = m = 1 7 s ( m + 2 ) 2 x m \displaystyle \sum_{m=1}^7 pm^2 x_{m} + \displaystyle \sum_{m=1}^7 q(m+1)^2 x_{m} + \displaystyle \sum_{m=1}^7 r(m+3)^2 x_{m} = \displaystyle \sum_{m=1}^7 s(m+2)^2 x_{m}
  • \Leftrightarrow p m 2 x m + q ( m + 1 ) 2 x m + r ( m + 3 ) 2 x m = s ( m + 2 ) 2 x m pm^2 x_{m} + q(m+1)^2 x_{m} + r(m+3)^2 x_{m} = s(m+2)^2 x_{m}
  • \Leftrightarrow p m 2 + q ( m + 1 ) 2 + r ( m + 3 ) 2 = s ( m + 2 ) 2 pm^2 + q(m+1)^2 + r(m+3)^2 = s(m+2)^2
  • \Leftrightarrow p m 2 + q ( m 2 + 2 m + 1 ) + r ( m 2 + 6 m + 9 ) = s ( m 2 + 4 m + 4 ) pm^2 + q(m^2+2m+1) + r(m^2+6m+9) = s(m^2+4m+4)
  • \Leftrightarrow ( p + q + r ) m 2 + ( 2 q + 6 r ) m + ( q + 9 r ) = s m 2 + 4 s m + 4 s (p+q+r)m^2+(2q+6r)m+(q+9r)=sm^2+4sm+4s ...........(2)
  • According to Right Hand Side,
  • ( p + q + r ) : ( 2 q + 6 r ) : ( q + 9 r ) = 1 : 4 : 4 (p+q+r):(2q+6r):(q+9r)=1:4:4 ........(3)
  • So, 2 q + 6 r = q + 9 r 2q+6r=q+9r
  • q = 3 r \Leftrightarrow q=3r
  • q r = 3 1 \Leftrightarrow \frac {q}{r}= \frac {3}{1}
  • q : r = 3 : 1 \Leftrightarrow q:r=3:1
  • Let us take q = 3 k q=3k and r = k r=k
  • Now, From (3),
  • ( p + q + r ) : ( 2 q + 6 r ) = 1 : 4 (p+q+r):(2q+6r)=1:4
  • ( p + 4 k ) : ( 12 k ) = 1 : 4 \Leftrightarrow (p+4k):(12k)=1:4
  • 4 ( p + 4 k ) = 12 k \Leftrightarrow 4(p+4k)=12k
  • 4 p = 4 k \Leftrightarrow 4p=-4k
  • p = k \Leftrightarrow p=-k
  • From 1st terms on both sides of (2), we get,
  • p + q + r = s p+q+r=s
  • 3 k = s 3k=s
  • Putting the values of p, q, r & the summation series in (1) simultaneously, we get,
  • k 1 + 3 k 10 + k 100 = 3 k ? -k*1+3k*10+k*100=3k*?
  • k + 30 k + 100 k = 3 k ? -k+30k+100k=3k?
  • 3 k ? = 129 k 3k?=129k
  • ? = 43 ?=43
  • [This is the formal solution. Modification permitted.]
  • Rabeeb Ibrat, Class Ten, Cantonment Public School & College, Mymensingh, Bangladesh.

nice solution.............. this is how I solved

Rishi Hazra - 6 years, 7 months ago
Mikail Khona
May 20, 2014

(16x1- x1)/3 + 4x1= 9x1 (25x2- 4x2) + 9x2 = 16 x2 and so,

[(16x1+25x2+36x3+49x4+64x5+81x6+100x7)-(x1+4x2+9x3+16x4+25x5+36x6+49x7)]3 + 4x1+9x2+16x3+25x4+36x5+49x6+64x7 = 9x1+16x2+25x3+36x4+49x5+64x6+81x7

(100-1)/3 +10= 43

Kyle Gettig
May 20, 2014

Since there are 7 7 variables but only 3 3 equations, we suspect that we can write the desired value as a sum of multiples of the given equations.

After some experimentation, we find that

( 1 3 ) ( x 1 + 4 x + 2 + 9 x 3 + 16 x 4 + 25 x 5 + 36 x 6 + 49 x 7 ) \left(-\frac{1}{3}\right)(x_1+4x+2+9x_3+16x_4+25x_5+36x_6+49x_7) + ( 1 ) ( 4 x 1 + 9 x 2 + 16 x 3 + 25 x 4 + 36 x 5 + 49 x 6 + 64 x 7 ) +(1)(4x_1+9x_2+16x_3+25x_4+36x_5+49x_6+64x_7) + ( 1 3 ) ( 16 x 1 + 25 x 2 + 36 x 3 + 49 x 4 + 64 x 5 + 81 x 6 + 100 x 7 ) +\left(\frac{1}{3}\right)(16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7) = 9 x 1 + 16 x 2 + 25 x 3 + 36 x 4 + 49 x 5 + 64 x 6 + 81 x 7 =9x_1+16x_2+25x_3+36x_4+49x_5+64x_6+81x_7

The desired value is therefore ( 1 3 ) ( 1 ) + ( 1 ) ( 10 ) + ( 1 3 ) ( 100 ) = 43 \left(-\frac{1}{3}\right)(1)+(1)(10)+\left(\frac{1}{3}\right)(100)=43 .

Some motivation for these coefficients in the linear combination can be taken from ignoring the last 4 4 terms and solving the resulting three-variable system of equations whose variables are the coefficients.

Calvin Lin Staff
May 13, 2014

Let S 1 = x 1 + 4 x 2 + 9 x 3 + 16 x 4 + 25 x 5 + 36 x 6 + 49 x 7 S_1 = x_1 + 4x_2 + 9x_3 + 16x_4 + 25x_5 + 36x_6 + 49x_7 , S 2 = 4 x 1 + 9 x 2 + 16 x 3 + 25 x 4 + 36 x 5 + 49 x 6 + 64 x 7 S_2 = 4x_1 + 9x_2 + 16x_3 + 25x_4 + 36x_5 + 49x_6 + 64x_7 , S 3 = 9 x 1 + 16 x 2 + 25 x 3 + 36 x 4 + 49 x 5 + 54 x 6 + 81 x 7 S_3 = 9x_1 + 16x_2 + 25x_3 + 36x_4 + 49x_5 + 54x_6 + 81x_7 and S 4 = 16 x 1 + 25 x 2 + 36 x 3 + 49 x 4 + 64 x 5 + 81 x 6 + 100 x 7 S_4 = 16x_1 + 25x_2 + 36x_3 + 49x_4 + 64x_5 + 81x_6 + 100x_7 .

We notice that each of the coefficients of x i x_i in S i S_i are i 2 i^2 , ( i + 1 ) 2 (i+1)^2 , ( i + 2 ) 2 (i+2)^2 and ( i + 3 ) 2 (i+3)^2 respectively.

Solution 1: Let Now, let x 1 , x 2 , x 7 x_1, x_2, \ldots x_7 be fixed, and consider the polynomial

f ( n ) = ( n ) 2 ( x 1 ) + ( n + 1 ) 2 ( x 2 ) + + ( n + 6 ) 2 ( x 7 ) f(n) = (n)^2 (x_1) + (n+1)^2 (x_2) + \ldots + (n+6)^2(x_7) . Because the left side is a quadratic in n n (with constant coefficients), and we are given three values of the quadratic, Hence the quadratic must be f ( n ) = 12 n 2 27 n + 16 f(n) = 12n^2 - 27n + 16 . Thus, the answer is given by n = 3 n=3 , f ( n ) = 12 ( 9 ) 27 ( 3 ) + 16 = 43 f(n) = 12(9) - 27(3) + 16 = 43

Solution 2: Thus, we seek a linear combination such that: a i 2 + b ( i + 1 ) 2 + c ( i + 3 ) 2 = ( i + 2 ) 2 ( a + b + c ) i 2 + ( 2 b + 6 c ) i + b + 9 c = i 2 + 4 i + 4 ai^2 + b(i+1)^2 + c(i+3)^2 = (i+2)^2 \Rightarrow (a + b +c)i^2 + (2b + 6c)i + b + 9c = i^2 + 4i + 4 . Equating coefficients, we have a + b + c = 1 a + b + c = 1 , 2 b + 6 c = 4 b + 3 c = 2 2b + 6c = 4 \Rightarrow b + 3c = 2 and b + 9 c = 4 b + 9c = 4 . Subtracting the last two equations gives c = 1 3 c = \frac{1}{3} and b = 1 b = 1 . Substituting these values in the first equation we have a = 1 3 a = -\frac{1}{3} .

Therefore S 3 = 1 3 S 1 + S 2 + 1 3 S 4 = 1 3 1 + 1 10 + 1 3 100 = 43 S_3 = -\frac{1}{3}S_1 + S_2 + \frac{1}{3}S_4 = -\frac{1}{3}\cdot 1 + 1 \cdot 10 + \frac{1}{3}\cdot 100 = 43 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...