Squares inscribed in a Circle

Geometry Level 3

The circle above has a radius of 1 1 and the blue and red circles have side lengths of a a and b b respectively.

Find min ( a 2 + b 2 ) + a b \min(a^2 + b^2) + \dfrac{a}{b} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 25, 2021

( a + b ) 2 + a 2 = 1 b 2 + 2 a b + 2 a 2 1 = 0 b = 1 a 2 a (a + b)^2 + a^2 = 1 \implies b^2 + 2ab + 2a^2 - 1 = 0 \implies b = \sqrt{1 - a^2} - a , dropping the negative root

A = a 2 + b 2 = a 2 + ( 1 a 2 1 ) 2 = a 2 2 a 1 a 2 + 1 \implies A = a^2 + b^2 = a^2 + (\sqrt{1 - a^2} - 1)^2 = a^2 - 2a\sqrt{1 - a^2} + 1 \implies

d A d a = a 1 a 2 ( 1 2 a 2 ) 1 a 2 = 0 \implies \dfrac{dA}{da} = \dfrac{a\sqrt{1 - a^2} - (1 - 2a^2)}{\sqrt{1 - a^2}} = 0 \implies a 2 ( 1 a 2 ) = ( 1 2 a 2 ) 2 a^2(1 - a^2) = (1 - 2a^2)^2

4 a 4 4 a 2 + 1 = a 2 a 4 5 a 4 5 a 2 + 1 = 0 a 2 = 5 ± 5 10 \implies 4a^4 - 4a^2 + 1 = a^2 - a^4 \implies 5a^4 - 5a^2 + 1 = 0 \implies a^2 = \dfrac{5 \pm \sqrt{5}}{10} a = 5 ± 5 10 \implies a = \sqrt{\dfrac{5 \pm \sqrt{5}}{10}}

For ( + ) b = 5 5 10 5 + 5 10 < 0 (+) \implies b = \sqrt{\dfrac{5 - \sqrt{5}}{10}} - \sqrt{\dfrac{5 + \sqrt{5}}{10}} < 0 \therefore

a = 5 5 10 b = 5 + 5 10 5 5 10 a = \sqrt{\dfrac{5 - \sqrt{5}}{10}} \implies b = \sqrt{\dfrac{5 + \sqrt{5}}{10}} - \sqrt{\dfrac{5 - \sqrt{5}}{10}}

b 2 = 5 2 5 = 5 2 5 5 \implies b^2 =\dfrac{\sqrt{5} - 2}{\sqrt{5}} = \dfrac{5 - 2\sqrt{5}}{5} and a 2 = 5 5 10 a^2 = \dfrac{5 - \sqrt{5}}{10} \implies

The m i n ( a 2 + b 2 ) = 3 5 2 min(a^2 + b^2) = \boxed{\dfrac{3 - \sqrt{5}}{2}}

and a b = 5 5 2 ( 5 2 5 ) = ( 5 5 ) ( 5 + 2 5 ) 2 5 = \dfrac{a}{b} = \sqrt{\dfrac{5 - \sqrt{5}}{2(5 - 2\sqrt{5})}} = \sqrt{\dfrac{(5 - \sqrt{5})(5 + 2\sqrt{5})}{2 * 5}} =

3 + 5 2 = ( 5 + 1 2 ) 2 = 5 + 1 2 \sqrt{\dfrac{3 + \sqrt{5}}{2}} = \sqrt{(\dfrac{\sqrt{5} + 1}{2})^2} = \boxed{\dfrac{\sqrt{5} + 1}{2}}

m i n ( a 2 + b 2 ) + a b = 2 \implies min(a^2 + b^2) + \dfrac{a}{b} = \boxed{2} .

Note: You can check that a min does occur at a = 5 5 10 a = \sqrt{\dfrac{5 - \sqrt{5}}{10}} .

5 5 10 < a < 5 5 10 d A d a < 0 -\sqrt{\dfrac{5 - \sqrt{5}}{10}} < a < \sqrt{\dfrac{5 - \sqrt{5}}{10}} \implies \dfrac{dA}{da} < 0 choosing a = 0 a = 0

and

5 5 10 < a < 5 + 5 10 d A d a > 0 \sqrt{\dfrac{5 - \sqrt{5}}{10}} < a < \sqrt{\dfrac{5 + \sqrt{5}}{10}} \implies \dfrac{dA}{da} > 0 choosing a = 3 4 a = \dfrac{3}{4}

I saw there's a little mistake in your solution, did you notice it?

Vincent Huang - 1 week, 6 days ago

Log in to reply

No, where is it?

Rocco Dalto - 1 week, 6 days ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...