Squares n Circles

Level 2

A square is inscribed in a circle of radius R, a circle is inscribed in this square, then a square in this circle and so on, n times.Find the limit of sum of ares of all the squares as n n\rightarrow \infty

R 2 / 2 { R }^{ 2 }/2 2 R 2 2{ R }^{ 2 } 4 R 2 4{ R }^{ 2 } R 2 { R }^{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arpita Karkera
May 17, 2014

Let the side of first square be a 1 { a }_{ 1 } .

2 a 1 = 2 R \sqrt { 2 } { a }_{ 1 }=2R

a 1 = 2 R { a }_{ 1 }=\sqrt { 2 } R

Let a 2 { a }_{ 2 } be the side of second square.

2 a 2 = a 1 \sqrt { 2 } { a }_{ 2 }={ a }_{ 1 } ( \because Radius of second circle=a/2)

a 2 = a 1 2 { a }_{ 2 }=\cfrac { { a }_{ 1 } }{ \sqrt { 2 } }

Similarly,

a 3 = a 2 2 = a 1 2 { a }_{ 3 }=\cfrac { { a }_{ 2 } }{ \sqrt { 2 } } =\cfrac { { a }_{ 1 } }{ \sqrt { 2 } }

..............................................

.............................................

Sum of areas of squares as n n\rightarrow \infty ,

S = a 1 2 + a 2 2 + a 3 2 + . . . { S }_{ \infty }={ a }_{ 1 }^{ 2 }\quad +\quad { a }_{ 2 }^{ 2 }\quad +\quad { a }_{ 3 }^{ 2 }\quad +\quad .\quad .\quad .\quad \infty

S = a 1 2 + a 1 2 2 + a 1 2 4 + . . . { S }_{ \infty }\quad ={ a }_{ 1 }^{ 2 }\quad +\quad \cfrac { { a }_{ 1 }^{ 2 } }{ 2 } \quad +\quad \cfrac { { a }_{ 1 }^{ 2 } }{ 4 } \quad +\quad .\quad .\quad .\quad \infty

S = a 1 2 ( 1 + 1 2 + 1 4 + . . . ) { S }_{ \infty }\quad ={ a }_{ 1 }^{ 2 }(1+\frac { 1 }{ 2 } +\frac { 1 }{ 4 } +\quad .\quad .\quad .\quad \infty )

This is an infinite GP with common difference 1/2.

S = a 1 2 ( 1 1 1 2 ) { S }_{ \infty }\quad ={ a }_{ 1 }^{ 2 }(\cfrac { 1 }{ 1-\frac { 1 }{ 2 } } )

S = 2 a 1 2 = 4 R 2 { S }_{ \infty }\quad =2{ a }_{ 1 }^{ 2 }\quad =4{ R }^{ 2 }

Hence the answer is 4 R 2 4{ R }^{ 2 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...