Squares won't help you... again.

Algebra Level 3

Solve the following equation:

2 x + 8 + x 2 + 5 x + 6 = 5 x 2 + 50 x + 105 \large 2\sqrt{x + 8} + \sqrt{x^2 + 5x + 6} = \sqrt{5x^2 + 50x + 105}

If x = a + b c x = \dfrac{\sqrt a + b}{c} then calculate a + b c \dfrac{a + b}{c} .


The answer is 63.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

2 x + 8 + x 2 + 5 x + 6 = 5 x 2 + 50 x + 105 . S q u a r i n g b o t h s i d e s , 4 x + 32 + x 2 + 5 x + 6 + 4 ( x + 8 ) ( x 2 + 5 x + 6 ) = 5 x 2 + 50 x + 105. 4 ( x + 8 ) ( x 2 + 5 x + 6 ) = 4 x 2 + 41 x + 67. A g a i n s q u a r i n g b o t h s i d e s , 16 ( x + 8 ) ( x 2 + 5 x + 6 ) = ( 4 x 2 + 41 x + 67 ) 2 . 16 x 4 + 312 x 3 + 2009 x 2 + 4758 x + 3721 = 0. ( 4 x 2 + 39 x + 61 ) 2 = 0. S o l v i n g q u a d r a t i c , x = 39 ± 3 9 2 4 4 61 2 4 . x = 39 ± 545 8 . x = b ± a c . ± a + b c = ± 545 39 8 = 63.25 O R 73 2\sqrt{x+8}+\sqrt{x^2+5x+6}=\sqrt{5x^2+50x+105}.\\ ~~~~\\ Squaring~both~sides,\\ 4x+32+x^2+5x+6+4\sqrt{(x+8)(x^2+5x+6)}=5x^2+50x+105.\\ \therefore~~4\sqrt{(x+8)(x^2+5x+6)}=4x^2+41x+67.\\ ~~~\\ Again~squaring~both~sides,\\ 16(x+8)(x^2+5x+6)=(4x^2+41x+67)^2.\\ \therefore~~16x^4+312x^3+2009x^2+4758x+3721=0.\\ \implies~(4x^2+39x+61)^2=0.\\ ~~~\\ Solving~quadratic,\\ x=\dfrac{-39\pm\sqrt{39^2-4*4*61} }{2*4}.\\ x=\dfrac{-39\pm\sqrt{545} }{8}.\\ x=\dfrac{b\pm\sqrt{a} }{c}.\\ ~~~\\ \dfrac{\pm a+b} c=\dfrac{\pm 545-39} 8=\color{#D61F06}{\Large~63.25~~OR~~-73}\\
Why the heading "Squares won't help you... again." !!!

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...