Squaring a Leg

Geometry Level 4

In triangle A B C ABC , B A C = 2 A B C \angle BAC = 2 \angle ABC , A B = 25 AB= 25 and A C = 11 AC = 11 . What is B C 2 BC^2 ?


The answer is 396.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

21 solutions

Draw A D AD where D D is on B C BC and A D AD bisects B A C \angle BAC .

Thus B A D = A B C \angle BAD=\angle ABC i.e. Δ A B D \Delta ABD is isosceles.

A D C = B A D + A B C = B A C \angle ADC=\angle BAD+\angle ABC=\angle BAC , hence Δ A B C Δ D A C \Delta ABC\sim\Delta DAC .

This means that A B A C = D A D C = D B D C \frac{AB}{AC}=\frac{DA}{DC}=\frac{DB}{DC} . Let B C = a BC=a hence D B = 25 36 a DB=\frac{25}{36}a and D C = 11 36 a DC=\frac{11}{36}a .

Since B C A C = A C D C \frac{BC}{AC}=\frac{AC}{DC} , we form this equation a 11 = 11 11 36 a \frac{a}{11}=\frac{11}{\frac{11}{36}a} .

Manipulate to get a 2 = 396 a^2=396 , which is the answer.

There are numerous ways to approach this problem, like using sine rule, cosine rule, double angle formulas, triple angle formulas, angle bisector theorem and stewart's theorem.

Calvin Lin Staff - 7 years ago
Dilip Nazareth
May 20, 2014

Name angles and sides of the triangle: A = B A C B = A B C C = B C A a = B C b = A C c = A B \begin{array}{l l l l} &A &= &\angle BAC \\ &B &= &\angle ABC \\ &C &= &\angle BCA \\ &a &= &BC \\ &b &= &AC \\ &c &= &AB \end{array}

This implies the following:

A = 2 B C = 18 0 A B = 18 0 3 B b = 11 c = 25 \begin{array}{l l l l} &A &= &2B \\ &C &= &180^ \circ-A-B \\ & &= &180^ \circ-3B \\ &b &= &11 \\ &c &= &25 \end{array}

Law of Sines: a sin A = b sin B = c sin C 11 sin B = 25 sin ( 18 0 3 B ) \begin{array}{l l l l l l} &\frac {a}{\sin A} &= &\frac {b}{\sin B} &= &\frac {c}{\sin C} \\ \Rightarrow & & &\frac {11}{\sin B} &= &\frac {25}{\sin (180^ \circ-3B)} \\ \end{array}

Difference Formulas: sin ( α β ) = sin α cos β cos α sin β sin ( 18 0 θ ) = sin θ sin ( 18 0 3 B ) = sin 3 B \begin{array}{l l l l} &\sin (\alpha-\beta) &= &\sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \Rightarrow &\sin (180^ \circ - \theta) &= &\sin \theta \\ \Rightarrow &\sin (180^ \circ - 3B) &= &\sin 3B \end{array}

Triple Angle Formulas: sin 3 θ = 3 sin θ 4 sin 3 θ sin 3 B = 3 sin B 4 sin 3 B \begin{array}{l l l l} &\sin 3\theta &= &3\sin \theta - 4 \sin^3 \theta \\ \Rightarrow &\sin 3B &= &3\sin B - 4\sin^3 B \end{array}

Continuing the solution, 11 sin B = 25 sin 3 B = 25 3 sin B 4 sin 3 B sin 2 B = 2 11 \begin{array}{l l l l} \Rightarrow &\frac {11}{\sin B} &= &\frac {25}{\sin 3B} \\ & &= &\frac {25}{3\sin B - 4 {\sin}^3 B } \\ \Rightarrow &\sin^2 B &= &\frac {2}{11} \end{array}

Law of Cosines: a 2 = b 2 + c 2 2 b c cos A = 1 1 2 + 2 5 2 2 11 25 cos 2 B \begin{array}{l l l l} &a^2 &= &b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos A \\ & &= &11^2 + 25^2 - 2 \cdot 11 \cdot 25 \cdot \cos 2B \end{array}

Double Angle Formulas: cos 2 θ = 1 2 sin 2 θ cos 2 B = 1 2 sin 2 B = 1 2 2 11 = 7 11 \begin{array}{l l l l} &\cos 2\theta &= &1 - 2 \sin^2 \theta \\ \Rightarrow &\cos 2B &= &1 - 2 \sin^2 B \\ & &= &1 - 2 \cdot \frac{2}{11} \\ & &= &\frac{7}{11} \end{array}

Continuing the solution,
a 2 = 1 1 2 + 2 5 2 2 11 25 7 11 = 396 \begin{array}{l l l l} &a^2 &= &11^2 + 25^2 - 2 \cdot 11 \cdot 25 \cdot \frac{7}{11} \\ & &= &396 \end{array}

Vincent Zhuang
May 20, 2014

We draw the angle bisector of B A C \angle{BAC} . Suppose that it hits B C \overline{BC} at D D . Now D A B = D B A \angle{DAB} = \angle{DBA} , so D A B \triangle{DAB} is isosceles. Let D A = D B = X DA=DB=X . By the angle bisector theorem, D C = 11 25 x DC = \frac{11}{25}x . Now, by Stewart's theorem for angle bisectors, we have x 2 = 11 25 3 6 2 ( 3 6 2 ( 36 11 x ) 2 ) B C 2 = ( 36 25 x ) 2 = 3 6 2 275 625 2 5 2 900 = 396 x^2=\frac{11\cdot25}{36^2}(36^2-(\frac{36}{11}x)^2) \Rightarrow {BC}^2 = (\frac{36}{25}x)^2 = \frac{36^2 \cdot 275 \cdot 625}{25^2 \cdot 900} = 396 .

Highly overrated problem, given the volume of solvers.

Rajen Kapur - 6 years, 7 months ago
Kee Wei Lee
May 20, 2014

Let D D be a point on line B C BC such that A D AD bisects B A C ∠BAC . Note that D A B = A B D ∠DAB=∠ABD so triangle A B D ABD is isosceles, where A D = D B AD=DB .

So now we have C A D = C B A ∠CAD=∠CBA and C D A = C A B ∠CDA=∠CAB which implies that triangles A D C ADC and B A C BAC are similar. So we have;

A C B C = D A A B = D C A C \frac{AC}{BC}=\frac{DA}{AB}=\frac{DC}{AC}

or

11 D C + B D = B D 25 = D C 11 \frac{11}{DC+BD}=\frac{BD}{25}=\frac{DC}{11}

So we can conclude that B D = 25 11 D C BD=\frac{25}{11}DC

So, 11 D C + 25 11 D C = D C 11 D C 2 = 1 1 2 ( 36 11 ) \frac{11}{DC+\frac{25}{11}DC}=\frac{DC}{11}\Rightarrow DC^2=\frac{11^2}{(\frac{36}{11})}

Now B C 2 = ( D C + D B ) 2 BC^2=(DC+DB)^2 = ( D C + 25 11 D C ) 2 =(DC+\frac{25}{11}DC)^2 = ( 36 11 D C ) 2 =(\frac{36}{11}DC)^2 = ( 36 11 ) 2 1 1 2 ( 36 11 ) =(\frac{36}{11})^2\frac{11^2}{(\frac{36}{11})} = 396 =396

Gilbert Chng
May 20, 2014

Let angle BAC be 2x and angle ABC be x, then angle ACB will be (180-3x). By cosine rule, BC^2=25^2+11^2-2(25)(11)cos2x. By sine rule, 25/sin(180-3x)=11/sinx. Since sin(180-3x)=sin3x=(sinx)(3-4sin^2x), by simplifying the sine rule equation, we get sin^2 x=2/11. Since cos2x=1-2 sin^2 x, by substituting sin^2 x=2/11 into cos2x, we get cos2x=7/11. Hence, by substituting cos2x=7/11 into the cosine rule equation, we can get BC^2=396.

Kumar Ashutosh
May 20, 2014

We have, in triangle ABC, B A C = 2 × A B C \angle BAC = 2 \times \angle ABC Let A B C = x \angle ABC = x , so B A C = 2 x \angle BAC = 2x . By angle sum property, B C A = π 3 x \angle BCA = \pi - 3x . Again let BC = y y .Now by applying SINE RULE, area of triangle ABC = 1 2 A C × B C × s i n C \frac {1}{2} AC \times BC \times sinC = 1 2 × 11 × y × s i n ( π 3 x \frac {1}{2} \times 11 \times y \times sin( \pi - 3x ) = 1 2 × 11 × y × s i n ( 3 x \frac {1}{2} \times 11 \times y \times sin( 3x ) because s i n ( π 3 x sin( \pi - 3x ) = s i n ( 3 x ) sin(3x) . Now, by applying SINE RULE once again, area of triangle ABC = 1 2 A B × B C × s i n B \frac {1}{2} AB \times BC \times sinB = 1 2 25 × y × s i n x \frac {1}{2} 25 \times y \times sinx . Since area of triangle is equal if we calculate it in any way. So, 1 2 11 × y × s i n 3 x \frac {1}{2} 11 \times y \times sin3x = 1 2 25 × y × s i n x \frac {1}{2} 25 \times y \times sinx . \Rightarrow \(11 \times sin3x = 25 \times sinx Putting s i n 3 x = 3 s i n x 4 ( s i n x ) 3 sin3x = 3 sinx - 4 (sinx)^3 in the above equation we get 11 ( 3 s i n x 4 ( s i n x ) 3 ) = 25 s i n x 11 ( 3 sinx - 4 (sinx)^3) = 25 sinx 44 ( s i n x ) 3 = 8 s i n x \Rightarrow 44(sinx)^3 = 8 sinx . So this means either 44 ( s i n x ) 2 = 8 44 (sinx)^2 = 8 OR s i n x = 0 sinx = 0 . But s i n x sinx can't be 0 as x can't be 0, π \pi etc. for a triangle. Hence, 44 ( s i n x ) 2 = 8 44 (sinx)^2 = 8 ( s i n x ) 2 = 8 44 \Rightarrow (sinx)^2 = \frac {8}{44} ....................... ( i ) Now once again taking SINE RULE, area of triangle ABC = 1 2 A C × A B × s i n A \frac {1}{2} AC \times AB \times sinA = 1 2 11 × 25 × s i n 2 x \frac {1}{2} 11 \times 25 \times sin2x . Now equating it with area of triangle earlier derived we get 1 2 25 × y × s i n x \frac {1}{2} 25 \times y \times sinx = 1 2 11 × 25 × s i n 2 x \frac {1}{2} 11 \times 25 \times sin2x y s i n x = 11 s i n 2 x \Rightarrow y sinx = 11 sin2x y s i n x = 11 × 2 × s i n x × c o s x \Rightarrow y sinx = 11 \times 2 \times sinx \times cosx y = 22 c o s x = 22 1 ( s i n x ) 2 = 22 1 8 44 = 22 36 44 \Rightarrow y = 22 cosx = 22 \sqrt{1 - (sinx)^2} = 22 \sqrt{1 - \frac {8}{44}} = 22 \sqrt{\frac {36}{44}} y = 6 11 \Rightarrow y = 6 \sqrt{11} . Here c o s x cosx can't be negative as it will make y y negative. so, y = 6 11 y = 6 \sqrt{11} . Hence, y 2 = ( B C ) 2 = 396 y^2 = (BC)^2 = 396 . So 396 is the required answer.

Mustafa Warsi
May 20, 2014

Firstly, let us label Angle ABC, x. Therefore, Angle BAC = 2x.

Drawing the triangle, and using the Sin Rule, we immediately see that,

\frac {11}{sin x} = \frac {BC}{sin 2x}

\Rightarrow BC = \frac {11 sin 2x} {sin x}

But, as sin 2x = 2 sin x cos x,

BC = 22 cos x.

Now, using the cos rule,

BC^2 = 25^2 + 11^2- 2(275)(cos 2x)

But, cos 2x = 2cos^2 x - 1, and, by the relation given above, cos x = BC/ 22.

So, BC^2 = 625+121 - 2(275)(\frac {2*BC^2}{484} - 1)

Simplifying, we have,

\frac {36 BC^2} {11} = 1296

Which leaves us with,

BC^2 = 396

Sujata Sharma
May 20, 2014

Let \angle ABC = x ^ \circ and \angle BAC = 2x ^ \circ. Hence, \angle BCA = 180-3x ^ \circ

By Sine Rule, we have: \frac {BC}{sin A} = \frac {AB}{sin C} = \frac {AC}{sin B}

=> \frac {BC}{sin 2x} = \frac {25}{sin 3x} = \frac {11}{sin180-3x}

Solving the equalities separately, and after simplifying we get: cos 2x=25/11 - BC^2/242 ....(i)

Using cosine rule, we get BC^2=AC^2 + AB^2 + 2(AB)(AC)(cosA)

Using (i) to substitute for cosA, we can solve for BC^2 to get BC^2 as 396

Kevin Li
May 20, 2014

Let the angle bisector of C A B \angle CAB hit B C BC at D D .

Now let B C = x BC=x .

By the angle bisector theorem,

C D D B = C A A B \frac{CD}{DB}=\frac{CA}{AB}

So

C D = C B C A C A + A B = 11 36 x CD=CB\cdot \frac {CA}{CA+AB}=\frac {11}{36}x

D B = C B A B C A + A B = 25 36 x DB=CB\cdot \frac {AB}{CA+AB}=\frac {25}{36}x

By Stewart's Theorem,

A D 2 = A C A B D C D B AD^2=AC\cdot AB - DC \cdot DB

Thus

A D 2 = 275 275 3 6 2 x 2 AD^2=275 - \frac{275}{36^2}x^2

Also since D A B = 1 2 C A B = D B A \angle DAB= \frac12 \angle CAB = \angle DBA ,

we have D B = D A DB=DA .

Thus

275 275 3 6 2 x 2 = A D 2 = D B 2 = ( 25 36 x ) 2 275 275 3 6 2 x 2 = 2 5 2 3 6 2 x 2 275 = 275 + 625 3 6 2 x 2 275 = 900 3 6 2 x 2 x 2 = 275 1296 900 = 396. \begin{aligned} 275 - \frac{275}{36^2}x^2&=AD^2=DB^2=(\frac {25}{36}x)^2 \\ 275-\frac{275}{36^2}x^2&=\frac{25^2}{36^2}x^2\\ 275&=\frac{275+625}{36^2}x^2\\ 275&=\frac{900}{36^2}x^2\\ x^2&=275\cdot \frac{1296}{900}=396. \end{aligned}

Jau Tung Chan
May 20, 2014

Let the angle bisector of A A intersect B C BC at D D . Let C B A = B A D = D A C = α \angle CBA = \angle BAD = \angle DAC = \alpha , and A D = B D = x AD=BD=x . Clearly, A D C = 2 α \angle ADC = 2\alpha .

Now, by angle bisector theorem, we have 25 x = 11 D C D C = 11 25 x \frac{25}{x} = \frac{11}{DC} \Rightarrow DC = \frac{11}{25}x .

Next, applying sine rule on A B C \triangle ABC we have 36 25 x sin 2 α = 11 sin α \frac{\frac{36}{25}x}{\sin 2 \alpha} = \frac{11}{\sin \alpha} . And applying sine rule on A B D \triangle ABD , we have x sin α \frac{x}{\sin \alpha} = \frac{25}{\sin (180^\circ - 2 \alpha) = 25 sin 2 α = \frac{25}{\sin 2 \alpha} . Multiplying these two equations and getting rid of the common denominators ( sin α sin 2 α \sin\alpha \sin 2 \alpha ), we have that 36 25 x 2 = 275 \frac{36}{25}x^2 = 275 .

Now, the questions requires we find B C 2 = ( 36 25 x ) 2 = ( 36 25 ) ( 36 25 x 2 ) = ( 36 25 ) ( 275 ) = 396 BC^2 = (\frac{36}{25}x)^2 = (\frac{36}{25})(\frac{36}{25}x^2) = (\frac{36}{25})(275)=396 .

Jinay Patel
Dec 21, 2013

Let angle ABC be x ,then angle BAC is 2 x. By sine rule , (sin x)/11 = (sin 2 x)/BC by cosine rule , cos x = (25^2 + BC^2 - 11^2)/2(25)(BC) By solving the two equations answer comes out to 396

angle A=2 angle B. By using cosine law, Bc^2=11^2+25^2-2x11x25cos2B -----Equation 1 11^2=Bc^2 +25^2-2Bcx25cosb-------Equation 2. Two equation and 2 unknown you can solve the problem. Bc^2=396.. angle b=25.239 degress

EDSEL SALARIOSA - 7 years, 5 months ago

well that's trigonometrically correct. but what I did is using similarity after construction .

Anirban Ghosh - 7 years, 3 months ago

did the same!

Kartik Sharma - 6 years, 7 months ago
Tan Kiat
Dec 22, 2013

Let B A C = 2 x \angle{BAC} = 2x , A B C = x \angle{ABC} = x .

By sine rule, 11 s i n x = B C s i n 2 x \frac{11}{sinx} = \frac{BC}{sin2x}

=> 11 s i n x = B C 2 s i n x c o s x \frac{11}{sinx} = \frac{BC}{2sinxcosx}

=> c o s x cos x = B C 22 \frac{BC}{22}

By cosine rule, B C 2 = 1 1 2 + 2 5 2 2 ( 11 ) ( 25 ) ( c o s 2 x ) BC^2 = 11^2 + 25^2 - 2(11)(25)(cos2x)

Consider c o s 2 x cos2x = 2 c o s 2 x 1 2cos^2x - 1 . By substituting c o s x cosx previously obtained, we have :

c o s 2 x cos2x = 1 242 B C 2 1 \frac{1}{242} BC^2 - 1

Hence, B C 2 = 1296 25 11 B C 2 BC^2 = 1296 - \frac{25}{11}BC^2

36 11 B C 2 = 1296 \frac{36}{11}BC^2 = 1296

B C 2 = 396 BC^2 = \boxed{396}

that was my answer

MôĦaméd Ñaßĩl - 7 years, 5 months ago
Harish Kp
Feb 13, 2014

just apply sine rule........

Tom Zhou
Dec 30, 2013

Let A B C = θ \angle{ABC}=\theta and let B C = x BC=x . Then B A C = 2 θ \angle{BAC}=2\theta . We want the value of x 2 x^2 ,

Firstly, we use the Law of Sines in A B C \triangle{ABC} to find

11 sin θ = x sin 2 θ = x 2 sin θ cos θ 22 sin θ cos θ = x sin θ cos θ = x 22 ( 1 ) \frac{11}{\sin\theta}=\frac{x}{\sin{2\theta}}=\frac{x}{2\sin\theta\cos\theta} \Rightarrow 22\sin\theta\cos\theta=x\sin\theta \Rightarrow \cos\theta=\frac{x}{22}\cdots(1)

Now we use the Law of Cosines in A B C \triangle{ABC} to find

1 1 2 = 2 5 2 + x 2 2 ( 25 ) x cos θ cos θ = ( 25 11 ) ( 25 + 11 ) + x 2 2 ( 25 ) x = x 2 + ( 14 ) ( 36 ) 50 x ( 2 ) 11^2=25^2+x^2-2(25)x\cos\theta \Rightarrow \cos\theta=\frac{(25-11)(25+11)+x^2}{2(25)x}=\frac{x^2+(14)(36)}{50x}\cdots(2)

Now we let ( 1 ) = ( 2 ) (1)=(2) to obtain

cos θ = x 22 = x 2 + ( 14 ) ( 36 ) 50 x 50 x 2 = 22 x 2 + 22 ( 14 ) ( 36 ) B C 2 = x 2 = ( 22 ) ( 14 ) ( 36 ) 2 ( 14 ) = 2 0 2 2 2 = 396 \cos\theta=\frac{x}{22}=\frac{x^2+(14)(36)}{50x} \Rightarrow 50x^2=22x^2+22(14)(36) \Rightarrow BC^2=x^2=\frac{(22)(14)(36)}{2(14)}=20^2-2^2=\boxed{396}

Ahaan Rungta
Dec 29, 2013

Let B C = x BC = x and let A B C = β \angle ABC = \beta . Then, from the Law of Cosines and the Law of Sines, respectively, we get: x 2 = 625 + 121 50 11 cos ( 2 β ) , sin ( 2 β ) x = sin ( β ) 11 . \begin{aligned} x^2 &=& 625 + 121 - 50 \cdot 11 \cdot \cos (2\beta), \\ \dfrac {\sin(2\beta)}{x} &=& \dfrac {\sin(\beta)}{11}. \end{aligned} Simplifying the second equation, we get 22 cos ( β ) = x . 22 \cos (\beta) = x. From the first equation, we get x 2 = 746 550 ( 2 cos 2 ( β ) 1 ) = 484 cos 2 ( β ) cos 2 ( β ) = 9 11 . x^2 = 746 - 550 \cdot \left( 2 \cos^2 (\beta) - 1 \right) = 484 \cos^2 (\beta) \implies \cos^2 (\beta) = \dfrac {9}{11}. Thus, we have x 2 = 484 cos 2 ( β ) = 484 9 11 = 396 x^2 = 484 \cos^2 (\beta) = 484 \cdot \dfrac {9}{11} = \boxed {396} .

Aryan C.
Dec 21, 2013

BC^2 = AC(AC+AB)=11(25+11)=11×36=396

Can you explain why B C 2 = A C ( A C + A B ) BC^2 = AC(AC+AB) ?

Jorge Tipe - 7 years, 5 months ago

Stewart's theorem

William Zhang - 7 years, 5 months ago

Log in to reply

To apply Stewart's Theorem you need a cevian. See: http://en.wikipedia.org/wiki/Stewart's_theorem

Jorge Tipe - 7 years, 5 months ago
Deepak Kamlesh
Dec 21, 2013

Let angle ABC =x, then angle BAC = 2x and angle ACB = 180 - 3x.

Using sine law, we have

sin 2x / BC = sin x / 11 =sin 3x / 25

Now, sin x / 11 = sin 3x / 25 implies sin 3x / sin x = 25/11 implies

3 - 4 sin^2 x = 25 / 11 implies 4 cos^2 x - 1 = 25/11 implies 4 cos^2 x = 36 / 11

and sin 2x / BC =sinx /11 implies BC = 11 sin 2x / sin x = 11 * 2 cos x

Therefore BC^2 = 121 * 4 cos^2 x = 121 * 36 /11 = 396.

Hence, BC^2 = 396 is the required solution.

Zn Mark
Dec 21, 2013
  • We know The Law of Cosines: A B 2 = B C 2 + A C 2 2. A C . B C . c o s A C B AB^{2} = BC^{2} + AC^{2} - 2.AC.BC.cos\angle{ACB}
  • A B C = θ = > B A C = 2 θ \angle{ABC} = \theta => \angle{BAC} = 2\theta

Then, we have 2 equations:

  • B C 2 = A C 2 + A B 2 2 A B . A C . c o s 2 θ BC^{2} = AC^{2} + AB^{2} - 2AB.AC.cos\angle{2\theta} (named as equation 1)
  • A C 2 = A B 2 + B C 2 2 A B . B C . c o s θ AC^{2} = AB^{2} + BC^{2} - 2AB.BC.cos\angle{\theta}

<=>

  • B C 2 + 550 ( 2 c o s 2 θ 1 ) = 746 BC^{2} +550(2cos^{2}\theta -1) = 746
  • B C 2 50 B C . c o s θ = 504 BC^{2} - 50BC.cos\theta = -504

<=>

  • B C 2 + 1100 c o s 2 θ = 1296 BC^{2} + 1100cos^{2}\theta = 1296
  • 18 B C 2 7 + 900 B C . c o s θ 7 = 1296 \frac{-18BC^{2}}{7} + \frac{900BC.cos\theta}{7} = 1296

=>

B C 2 + 1100 c o s 2 θ = 18 B C 2 7 + 900 B C . c o s θ 7 BC^{2} + 1100cos^{2}\theta = \frac{-18BC^{2}}{7} + \frac{900BC.cos\theta}{7}

<=>

7700 c o s 2 θ B C 2 900 c o s θ B C 2 + 25 = 0 \frac{7700cos^{2}\theta}{BC^{2}} - \frac{900cos\theta}{BC^{2}} + 25 = 0

=>

  • c o s θ B C = 1 14 \frac{cos\theta}{BC} = \frac{1}{14}
  • c o s θ B C = 1 22 \frac{cos\theta}{BC} = \frac{1}{22}

Compare with equation 1, we have:

  • B C 1 = 14 BC_{1} = 14 (wrong because it doesn't satisfied Triangle inequality)
  • B C 2 = 6 11 BC_{2} = 6\sqrt{11} (satisfied Triangle inequality)

=> B C 2 = 396 \boxed{BC^{2} = 396}

C = 180 ( B + 2 B ) = 180 3 B . S i n 3 B = 4 S i n 3 B = 3 S i n B . U s i n g S i n L a w , A C S i n B = A B S i n ( 180 3 B ) . B u t S i n ( 180 3 B ) = S i n 3 B = 4 S i n 3 B + 3 S i n B = S i n B ( S i n 2 B + 3 ) , 25 = 11 4 S i n 2 B + 3 . \angle\ C=180 - (B + 2B)=180 - 3B.\ \ \ Sin3B= - 4Sin^3B = 3SinB.\\ Using Sin Law, \dfrac{AC}{SinB}=\dfrac{AB}{Sin(180-3B)} .\\ But\ Sin(180-3B)=Sin3B=- 4Sin^3B + 3SinB=SinB*(-Sin^2B\ +\ 3),\\ \therefore\ 25=\dfrac{11}{-4Sin^2B+3}.\\ S i m p l i f y i n g S i n 2 B = 2 11 . c o s 2 B = 9 11 . S i n 2 B = 2 ( 2 11 9 11 = 6 2 11 . Simplifying\ Sin^2B=\frac 2 {11}.\ \ \therefore\ cos^2B=\frac 9 {11}.\\ \therefore\ Sin2B=2*(\sqrt{\frac 2 {11}*\frac 9 {11}}=\dfrac{6\sqrt2}{11}.\\ U s i n g S i n L a w , B C = S i n 2 B A C S i n B = 6 2 11 11 2 11 B C 2 = 6 2 11 = 396. Using\ Sin\ Law, BC=Sin2B*\dfrac{AC}{SinB}=\dfrac{6\sqrt2}{11}*\dfrac{11}{\sqrt{\dfrac 2 {11}}}\\ BC^2=6^2*11=396.

Satyen Nabar
Feb 26, 2014

Angle A opposite side a and Angle B opposite side b, all triangles (integer or not) with B=2A have a(a+c)=b^2.

11(11+25)= b^2.

b^2= 396

Sriram K
Feb 22, 2014

This can be solved very easily with strong basics. I am not sure about any theorems and shortcuts.

Draw the triangle with side AB as the base and drop a altitude from C to line AB to meet at Point P. Also draw a line from C to PB to meet at Q such that Angle CAQ = angle CQA. Inferences : 1) AP =PQ , AC= CQ=11

2) We know Angle ABC = x ,Angle CAB = 2x, so angle ACB =180-3x.

3) Angle ACQ = 180-4x (Angle CAQ = angle CQA).

4) angle QCB = x , [(180-3x - (180-4x))], so CQ=QB=11.

BC^{2} = CP^{2} +PB^{2}

RHS can be written as

= AC^{2} - AP^{2}+PB^{2}

= AC^{2} - [AP^{2} - PB^{2}]

= AC^{2} - [ (AP - PB)*(AP+PB) ]

= AC^{2} - [ (AP - PB)*(AB) ]

= AC^{2} + [ (PB - AP )*(AB) ]

= AC^{2} + [ (PB - PQ )*(AB) ] .......................... (AP=PQ)

= AC^{2}+ [ (QB )*(AB) ]

= 11 11+[ 11 25] ................ eventually leading to Stewart's theorem (mentioned by Aryan.C)

= 396

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...