Squaring May Help

Algebra Level 3

If x 1 x + 1 + 1 = 0 \sqrt{x-1}-\sqrt{x+1}+1=0 , then what is the value of 4 x 4x ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Sep 26, 2016

x 1 x + 1 + 1 = 0 x 1 + 1 = x + 1 ( x 1 + 1 ) 2 = ( x + 1 ) 2 x 1 + 1 + 2 x 1 = x + 1 1 = 2 x 1 1 = 2 x 1 1 = 4 ( x 1 ) 1 = 4 x 4 4 x = 5 \sqrt{x-1}-\sqrt{x+1}+1=0 \\ \sqrt{x-1}+1=\sqrt{x+1} \\ (\sqrt{x-1}+1)^2 = (\sqrt{x+1})^2 \\ x - 1 + 1 + 2\sqrt{x-1} = x + 1 \\ 1 = 2\sqrt{x-1} \\ 1 = 2\sqrt{x-1} \\ 1 = 4(x-1) \\ 1 = 4x - 4 \\ 4x = 5

Nice solution.Did it the same way.

Satwik Murarka - 4 years, 8 months ago
Chew-Seong Cheong
Sep 27, 2016

x 1 x + 1 + 1 = 0 Rearranging x + 1 x 1 = 1 Squaring both sides x + 1 2 x 2 1 + x 1 = 1 2 x 1 = 2 x 2 1 Squaring both sides 4 x 2 4 x + 1 = 4 x 2 4 4 x = 5 \begin{aligned} \sqrt{x-1}-\sqrt{x+1} + 1 & = 0 & \small \color{#3D99F6}{\text{Rearranging}} \\ \sqrt{x+1}-\sqrt{x-1} & = 1 & \small \color{#3D99F6}{\text{Squaring both sides}} \\ x+1 - 2\sqrt{x^2-1} + x-1 & = 1 \\ 2x - 1& = 2\sqrt{x^2-1} & \small \color{#3D99F6}{\text{Squaring both sides}} \\ 4x^2 - 4x +1 & = 4x^2 - 4 \\ \implies 4x & = \boxed{5} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...