S q u e e z e Squeeze Ellipse and Calculus E l l i p s u l u s \Longrightarrow Ellipsulus

Calculus Level 5

Line segments A K 1 , A K 2 , . . . . . . , A K n AK_{1},AK_{2},......,AK_{n} Are drawn from A(1,1) where K 1 , K 2 , . . . . , K n K_{1},K_{2},....,K_{n} are points in first quadrant on ( x 1 ) 2 a 2 + ( y 1 ) b 2 ) \frac{(x-1)^{2}}{a^{2}}+\frac{(y-1)}{b^{2}})

(a>b).such that the chord A K r AK_{r} makes an angle of θ = r π 2 n \theta=\frac{r\pi}{2n} with the positive x axis.

l i m n ( 1 n ( r = 1 n ( A K r ) ( l i m n k = 1 n ( k n 2 + n + 2 k ) ) c ) ) = S d \displaystyle{lim_{n\rightarrow\infty}(\frac{1}{n}(\sum_{r=1}^{n}(AK_{r})^{(lim_{n\rightarrow\infty}\sum_{k=1}^{n}(\frac{k}{n^{2}+n+2k}))^{-c}}))=\frac{S}{d} }

S is the area of the ellipse

M and M' are the feet of perpendiculars from the foci S and S' to the tangents at any point P on the ellipse . If S M = 2 S M SM=2S'M' S P = 2 π S'P=2\pi d is the length of SP

find the value of 2 c 2c


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Milun Moghe
Mar 20, 2014

S n = l i m n k = 1 n k n 2 + n + 2 k S_{n}=lim_{n\rightarrow\infty}\sum_{k=1}^{n}\frac{k}{n^{2}+n+2k}

S n = 1 n 2 + n + 2 + 2 n 2 + n + 4 + . . . + n n 2 + n + 2 k S_{n}=\frac{1}{n^{2}+n+2}+\frac{2}{n^{2}+n+4}+...+\frac{n}{n^{2}+n+2k}

1 n 2 + 3 n + 2 n 2 + 3 n + . . . + n n 2 + 3 n < s n < 1 n 2 + n + 2 ( 1 + 2 + . . . . + n ) \frac{1}{n^{2}+3n}+\frac{2}{n^{2}+3n}+...+\frac{n}{n^{2}+3n}<s_{n}<\frac{1}{n^{2}+n+2}(1+2+....+n)

1 2 l i m n 1 2 \frac{1}{2}\leq lim_{n\rightarrow\infty}\leq\frac{1}{2}

By squeeze theorem

l i m n = 1 2 lim_{n\rightarrow\infty}=\frac{1}{2}

clearly we have from the properties of ellipses

S M S M = S P S P \frac{SM}{S'M'}=\frac{S'P}{SP}

d = π d=\pi

S = π a b S=\pi ab

S d = a b \therefore\frac{S}{d}=ab

Let the co-ordinates of the point K r K_{r} be ( 1 + R c o s θ , 1 + R s i n θ ) (1+Rcos\theta,1+Rsin\theta) here R = A K r R=AK_{r}

R 2 s i n 2 θ b 2 + R 2 c o s 2 θ a 2 = 1 \Rightarrow\frac{R^{2}sin^{2}\theta}{b^{2}}+\frac{R^{2}cos^{2}\theta}{a^{2}}=1

we can clearly observe that

l i m n 1 n r = 1 n A K r 2 = l i m n 1 n r = 1 n 1 ( c o s 2 ( r π 2 n ) a 2 + s i n 2 ( r π 2 n ) b 2 ) = 0 1 a 2 b 2 b 2 c o s 2 π x 2 + a 2 s i n 2 π x 2 d x = a b lim_{n\rightarrow\infty}\frac{1}{n}\sum_{r=1}^{n}AK_{r}^{2}=lim_{n\rightarrow\infty}\frac{1}{n}\sum_{r=1}^{n}\frac{1}{(\frac{cos^{2}(\frac{r\pi}{2n})}{a^{2}}+\frac{sin^{2}(\frac{r\pi}{2n})}{b^{2}})}=\int_{0}^{1}\frac{a^{2}b^{2}}{b^{2}cos^{2}\frac{\pi x}{2}+a^{2}sin^{2}\frac{\pi x}{2}}dx=ab

we can further also prove that this limit exists only for c=1

2c=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...