Squircles!

Algebra Level 4

A squircle is a mathematical shape with properties between those of a square and those of a circle. A squircle centered at the origin is defined by the equation: x 4 + y 4 = r 4 x^4+y^4 = r^4

What is the sum of the squares of the distinct x x -coordinates of the intersections of the graphs: x 4 + y 4 = 8 x^4+y^4 = 8 and y = 6 x 2 + 16 4 y = \sqrt[4]{-6x^2+16}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sharad Roy
May 2, 2014

x 4 + y 4 = 8 a n d y = 6 x 2 + 16 4 S u b s t i t u t i n g t h e v a l u e o f y i n f i r s t e q u a t i o n , w e g e t : x 4 + ( 6 x 2 + 16 ) 8 = 0 x 4 6 x 2 + 8 = 0 ( x 2 4 ) ( x 2 2 ) = 0 x 2 = 2 , 4 B u t w h e n w e s u b s t i t u t e t h e v a l u e o f x 2 = 4 i n s e c o n d e q u a t i o n , w e g e t v e n o . i n s i d e i t a n d t h e n t h e v a l u e o f y b e c o m e s i m a g i n a r y . x 2 = 2 x = ± 2 T h e r e f o r e , s u m o f s q u a r e o f x c o o r d i n a t e s = 2 + 2 = 4 \quad \quad \quad \quad \quad \quad { \quad \quad x }^{ 4 }+{ y }^{ 4 }\quad =\quad 8\quad and\quad y\quad =\quad \sqrt [ 4 ]{ -6{ x }^{ 2\quad }+\quad 16 } \\ Substituting\quad the\quad value\quad of\quad 'y'\quad in\quad first\quad equation,\quad we\quad get:\\ \quad \quad \quad \quad \quad \quad \quad \quad { x }^{ 4 }\quad +\quad (-{ 6x }^{ 2 }\quad +\quad 16)\quad -\quad 8\quad =\quad 0\\ \quad \quad \quad \quad \quad \quad \Rightarrow \quad { x }^{ 4 }\quad -\quad 6{ x }^{ 2 }\quad +\quad 8\quad =\quad 0\\ \quad \quad \quad \quad \quad \quad \Rightarrow \quad ({ x }^{ 2 }-\quad 4)({ x }^{ 2 }-\quad 2)\quad =\quad 0\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \therefore \quad { x }^{ 2 }\quad =\quad 2,4\\ But\quad when\quad we\quad substitute\quad the\quad value\quad of\quad { x }^{ 2 }\quad =\quad 4\quad in\quad second\quad \\ equation,\quad we\quad get\quad -ve\quad no.\quad inside\quad it\quad and\quad then\quad the\quad \\ value\quad of\quad y\quad becomes\quad imaginary.\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \therefore \quad { x }^{ 2 }\quad =\quad 2\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \Rightarrow \quad x\quad =\quad \pm \sqrt { 2 } \\ Therefore,\quad sum\quad of\quad square\quad of\quad x-coordinates\quad =\quad 2\quad +\quad 2\quad =\quad 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...