Stability?

Calculus Level 3

If function f ( x ) f(x) satisfies lim x ( f ( x ) + f ( x ) ) = C , C R , and C 0 \lim_{x\to \infty}(f(x)+f'(x))=C, C\in \mathbb{R}, \text{and }C\ne 0 Evaluate lim x f ( x ) \lim_{x\to \infty}f(x)

It is divergent 0 0 C C Information given is not sufficient

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Nov 23, 2018

We can use Bernoulli's Rule (often misattributed to de l'Hôpital): lim x f ( x ) = lim x e x f ( x ) e x = lim x ( e x f ( x ) ) ( e x ) = lim x e x f ( x ) + e x f ( x ) e x = lim x ( f ( x ) + f ( x ) ) = C \lim_{x\to \infty}f(x)=\lim_{x\to \infty}\frac{e^xf(x)}{e^x}=\lim_{x\to \infty}\frac{(e^xf(x))'}{(e^x)'}=\lim_{x\to \infty}\frac{e^xf(x)+e^xf'(x)}{e^x}=\lim_{x\to \infty}(f(x)+f'(x))=\boxed{C} .

The condition C 0 C \neq 0 is unnecessary, I believe.

But how do you know lim x e x f ( x ) = \lim_{x\to \infty}{e^xf(x)}=\infty . Otherwise you can't use Bernoulli's Rule.

Swafim Li - 2 years, 6 months ago

Log in to reply

Sure I can use it. Bernoulli's rule only requires that the denominator go to infinity. See Theorem 5.13 in "Baby Rudin," for example. (In introductory calculus texts, these issues are usually not handled well.)

Otto Bretscher - 2 years, 6 months ago

Log in to reply

You let me learn something new. Thanks

Swafim Li - 2 years, 6 months ago

I think we can clearly say that f ( x ) = e x + C f(x) = e^{-x} + C

As, f ( x ) + f ( x ) = e x + C + ( e x + 0 ) = C f(x) + f'(x) = e^{-x} + C + (-e^{-x} + 0) = C

Hence, lim x ( f ( x ) + f ( x ) ) = lim x C = C \displaystyle \lim_{x\rightarrow \infty} (f(x) + f'(x)) =\displaystyle \lim_{x\rightarrow \infty} C = C

Hence, we get lim x f ( x ) = lim x ( e x + C ) = e + C = 0 + C = C \displaystyle \lim_{x\rightarrow \infty} f(x) = \displaystyle \lim_{x\rightarrow \infty} (e^{-x} + C )= e^{-\infty} + C = 0+ C = \boxed{C}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...