Stacked Fractions

Algebra Level 3

For three positive integers a , b , c a,b,c it is true that a b c = 42 5 ; a b c = 7 270 . \frac a{\frac b c} = \frac {42}{5};\ \ \ \frac {\frac a b} c = \frac{7}{270}. What is the minimum value of a + b + c a + b + c ?

Inspiration.


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Multiplying the equations, we find a 2 b 2 = 42 7 5 270 = ( 2 3 7 ) 7 5 ( 2 3 3 5 ) = 7 2 3 2 5 2 ; \frac{a^2}{b^2} = \frac{42\cdot 7}{5\cdot 270} = \frac{(2\cdot 3 \cdot 7)\cdot 7}{5 \cdot (2 \cdot 3^3\cdot 5)} = \frac{7^2}{3^2\cdot 5^2}; a b = 7 3 5 = 7 15 . \frac a b = \frac{7}{3\cdot 5} = \frac 7{15}. This fraction is reduced to the smallest possible terms, guaranteeing that a + b = 7 + 15 = 22 a + b = 7 + 15 = 22 is minimal.

Dividing the equations, we find c 2 = 42 270 5 7 = ( 2 3 7 ) ( 2 3 3 5 ) 5 7 = 2 2 3 4 ; c^2 = \frac{42\cdot 270}{5\cdot 7} = \frac{(2\cdot 3\cdot 7)\cdot (2\cdot 3^3\cdot 5)}{5 \cdot 7} = 2^2\cdot 3^4; c = 2 3 2 = 18. c = 2\cdot 3^2 = 18.

Thus, a + b + c = 7 + 15 + 18 = 40 a + b + c = 7 + 15 + 18 = \boxed{40} .

{ a b c = c a b = 42 5 . . . ( 1 ) a b c = a b c = 7 270 . . . ( 2 ) \begin{cases} \dfrac a{\frac bc} = \dfrac {ca}b = \dfrac {42}5 & ...(1) \\ \dfrac {\frac ab}c = \dfrac a{bc} = \dfrac 7{270} & ...(2) \end{cases}

( 2 ) ( 1 ) : c a b × b c a = 42 5 × 270 7 c 2 = 324 c = 18 \begin{aligned} \frac {(2)}{(1)}: \quad \frac {ca}b \times \frac {bc}a & = \frac {42}5 \times \frac {270}7 \\ c^2 & = 324 \\ \implies c & = 18 \end{aligned}

( 2 ) : a 18 b = 7 250 a b = 7 15 a = 7 b = 15 \begin{aligned} (2): \quad \frac a{18b} & = \frac 7{250} \\ \frac ab & = \frac 7{15} \\ \implies a & = 7 \\ \implies b & = 15 \end{aligned}

a + b + c = 7 + 15 + 18 = 40 \implies a+b+c = 7+15+18 = \boxed{40}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...