Stacked semicircles in a quarter circle.

Geometry Level 3

The quarter circle has radius 1 1 and the semicircles are stacked in the quarter circle as shown above.

If the radius R 3 R_{3} of the red circle can be expressed as R 3 = a ( b c ) d d b b ( c b ) c R_{3} = \dfrac{\sqrt{a - (b^c)\sqrt{d}} - \sqrt{d} - b^b}{(c^b)\sqrt{c}} , where a , b , c a,b,c and d d are coprime positive integers, find a + b + c + d a + b + c + d .


The answer is 505.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 13, 2021

Using the above diagram 1 = 5 R 1 2 R 1 = 1 5 1 = 5R{1}^2 \implies R_{1} = \dfrac{1}{\sqrt{5}} and R 1 + R 2 = 5 R 2 + 1 5 R{1} + R_{2} = \dfrac{\sqrt{5}R_{2} + 1}{\sqrt{5}} \implies

( 5 R 2 + 1 ) 2 5 + 4 R 2 2 = 1 25 R 2 2 + 2 5 R 2 4 = 0 R 2 = 105 5 25 \dfrac{(\sqrt{5}R_{2} + 1)^2}{5} + 4R_{2}^2 = 1 \implies 25R_{2}^2 + 2\sqrt{5}R_{2} - 4 = 0 \implies R_{2} = \dfrac{\sqrt{105} - \sqrt{5}}{25} dropping the negative root

and ( R 1 + R 2 + R 3 ) 2 + 4 R 3 2 = 1 5 R 3 2 + 2 ( R 1 + R 2 ) R 3 + ( R 1 + R 2 ) 2 1 = 0 (R_{1} + R_{2} + R_{3})^2 + 4R_{3}^2 = 1 \implies 5R_{3}^2 + 2(R_{1} + R_{2})R_{3} + (R_{1} + R_{2})^2 - 1 = 0 \implies

R 3 = ( R 1 + R 2 ) + 5 4 ( R 1 + R 2 ) 2 5 R_{3} = \dfrac{-(R_{1} + R_{2}) + \sqrt{5 - 4(R_{1} + R_{2})^2}}{5} , where R 1 + R 2 = 21 + 4 5 5 R_{1} + R_{2} = \dfrac{\sqrt{21} + 4}{5\sqrt{5}} \implies

( R 1 + R 2 ) 2 = 37 + 8 21 125 5 4 ( R 1 + R 2 ) 2 = 477 32 21 125 (R_{1} + R_{2})^2 = \dfrac{37 + 8\sqrt{21}}{125} \implies 5 - 4(R_{1} + R_{2})^2 = \dfrac{477 - 32\sqrt{21}}{125} \implies

R 3 = 477 32 21 21 4 25 5 = 477 2 5 21 21 2 2 5 2 5 = R_{3} = \dfrac{\sqrt{477 - 32\sqrt{21}} - \sqrt{21} - 4}{25\sqrt{5}} = \dfrac{\sqrt{477 - 2^5\sqrt{21}} - \sqrt{21} - 2^2}{5^2\sqrt{5}} =

a ( b c ) d d b b ( c b ) c a + b + c + d = 505 \dfrac{\sqrt{a - (b^c)\sqrt{d}} - \sqrt{d} - b^b}{(c^b)\sqrt{c}} \implies a + b + c + d = \boxed{505} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...