Stacked spheres inscribed in a regular tetrahedron!

Level pending

In the regular tetrahedron above, extend the diagram to an infinite number of inscribed spheres. Along each radii O A , O B , O C OA, OB,OC and O P OP of the circumscribed sphere the inscribed stacked spheres are tangent to each other.

Let S S be the total volume of all the inscribed spheres and V T V_{T} be the volume of the tetrahedron.

If S V T = a b c c π \dfrac{S}{V_{T}} = \dfrac{a}{b * c\sqrt{c}}\pi , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 7, 2020

Using the diagram above we obtain the proportion:

a 1 2 3 r 1 = 3 a 1 2 ( 2 3 a 1 r 1 ) \dfrac{a_{1}}{2\sqrt{3}}r_{1} = \dfrac{\sqrt{3}a_{1}}{2(\sqrt{\dfrac{2}{3}}a_{1} - r{1})} \implies 4 r 1 = 2 3 a 1 r 1 r 1 = a 1 2 6 4r_{1} = \sqrt{\dfrac{2}{3}}a_{1} - r{1} \implies \boxed{r_{1} = \dfrac{a_{1}}{2\sqrt{6}}}

H 2 = H 1 2 r 1 = 2 3 a 1 a 1 6 = a 1 6 H_{2} = H_{1} - 2r_{1} =\dfrac{\sqrt{2}}{\sqrt{3}}a_{1} - \dfrac{a_{1}}{\sqrt{6}} = \dfrac{a_{1}}{\sqrt{6}} and r 1 r 2 = H 1 r 1 H 2 r 2 \dfrac{r_{1}}{r_{2}} = \dfrac{H_{1} - r_{1}}{H_{2} - r_{2}}

After simplifying we obtain the proportion: 1 r 2 = \dfrac{1}{r_{2}} = 3 a 1 6 r 2 4 r 2 = a 1 6 \dfrac{3}{\dfrac{a_{1}}{\sqrt{6}} - r_{2}} \implies 4r_{2} = \dfrac{a_{1}}{\sqrt{6}} \implies r 2 = a 1 2 2 6 \boxed{r_{2} = \dfrac{a_{1}}{2^2\sqrt{6}}}

H 3 = H 2 2 r 2 = a 1 6 a 1 2 6 = a 1 2 6 H_{3} = H_{2} - 2r_{2} =\dfrac{a_{1}}{\sqrt{6}} - \dfrac{a_{1}}{2\sqrt{6}} = \dfrac{a_{1}}{2\sqrt{6}} and r 2 r 3 = H 2 r 2 H 3 r 3 \dfrac{r_{2}}{r_{3}} = \dfrac{H_{2} - r_{2}}{H_{3} - r_{3}}

After simplifying we obtain the proportion: 1 r 3 = \dfrac{1}{r_{3}} = 3 a 1 2 6 r 3 4 r 3 = a 1 2 6 \dfrac{3}{\dfrac{a_{1}}{2\sqrt{6}} - r_{3}} \implies 4r_{3} = \dfrac{a_{1}}{2\sqrt{6}} \implies r 3 = a 1 2 3 6 \boxed{r_{3} = \dfrac{a_{1}}{2^3\sqrt{6}}}

In General: r n = a 1 6 ( 1 2 ) n \boxed{r_{n} = \dfrac{a_{1}}{\sqrt{6}}(\dfrac{1}{2})^n}

Note: H n = a 1 6 ( 1 2 ) n 2 H_{n} = \dfrac{a_{1}}{\sqrt{6}}(\dfrac{1}{2})^{n - 2}

V n = 4 3 π r n 3 = 2 9 6 π a 1 3 ( 1 8 ) n \implies V_{n} = \dfrac{4}{3}\pi r_{n}^3 = \dfrac{2}{9\sqrt{6}}\pi a_{1}^3(\dfrac{1}{8})^{n}

S = n = 1 V n = 2 9 6 π a 1 3 n = 1 ( 1 8 ) n = \implies S^{*} = \sum_{n = 1}^{\infty} V_{n} = \dfrac{2}{9\sqrt{6}}\pi a_{1}^3 \sum_{n = 1}^{\infty} (\dfrac{1}{8})^n = 2 9 6 π a 1 3 ( 1 8 ( 8 7 ) \dfrac{2}{9\sqrt{6}}\pi a_{1}^3(\dfrac{1}{8}(\dfrac{8}{7}) = 2 63 6 π a 1 3 = \dfrac{2}{63\sqrt{6}}\pi a_{1}^3

and V T = ( 1 3 ) ( 1 2 3 2 a 2 ) ( 2 3 ) a = V_{T} = (\dfrac{1}{3})(\dfrac{1}{2}\dfrac{\sqrt{3}}{2}a^2)(\sqrt{\dfrac{2}{3} })a = 1 6 2 a 3 \dfrac{1}{6\sqrt{2}}a^3

S = ( 1 6 2 a 3 ) ( 2 63 6 π ) ( 6 2 ) = \implies S^{*} = (\dfrac{1}{6\sqrt{2}}a^3)(\dfrac{2}{63\sqrt{6}}\pi)(6\sqrt{2}) = 4 3 63 π V T \dfrac{4\sqrt{3}}{63}\pi * V_{T}

and after simplifying V 1 = π 6 3 V T V_{1} = \dfrac{\pi}{6\sqrt{3}} * V_{T} using r 1 = a 1 2 6 r_{1} = \dfrac{a_{1}}{2\sqrt{6}}

V d = S V 1 = ( 4 3 63 1 6 3 ) π V T = V_{d} = S^{*} - V_{1} = (\dfrac{4\sqrt{3}}{63} - \dfrac{1}{6\sqrt{3}})\pi * V_{T} = 3 126 π V T \dfrac{\sqrt{3}}{126}\pi * V_{T} \implies 3 V d = 3 42 π 3V_{d} = \dfrac{\sqrt{3}}{42}\pi \implies

S = S + 3 V d = ( 4 3 63 + 3 42 ) π V T = S = S^{*} + 3V_{d} = (\dfrac{4\sqrt{3}}{63} + \dfrac{\sqrt{3}}{42})\pi * V_{T} = 11 3 126 π V T \dfrac{11\sqrt{3}}{126}\pi * V_{T}

S V T = 11 3 126 π = 11 π 14 3 3 = a b c c π a + b + c = 28 \implies \dfrac{S}{V_{T}} = \dfrac{11\sqrt{3}}{126}\pi = \dfrac{11\pi}{14 * 3\sqrt{3}} = \dfrac{a}{b * c\sqrt{c}}\pi \implies a + b + c = \boxed{28}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...