Stacking It Right

Geometry Level 2

The above shows two right triangles stacked on one another. What is the value of the ratio x y \dfrac xy ?

4 + 5 \sqrt4 + \sqrt5 6 + 7 \sqrt6 + \sqrt7 8 + 9 \sqrt8 + \sqrt9 10 + 11 \sqrt{10} + \sqrt{11}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Fuller
Jul 18, 2016

Let the leg of the right isosceles triangle have length A A . Then { x = A + A sin 45 ° y = A A sin 45 ° \begin{cases} x=A+A\sin { { 45 }^{ ° } } \\ y=A-A\sin { { 45 }^{ ° } } \end{cases} We can then find the ratio by factoring out A A from the numerator and denominator: x y = 1 + 2 2 1 2 2 = ( 2 + 2 ) 2 ( 2 2 ) ( 2 + 2 ) = 3 + 2 2 \dfrac{x}{y}=\dfrac{1+\dfrac{\sqrt2}{2}}{1-\dfrac{\sqrt2}{2}}=\dfrac{(2+\sqrt2)^2}{(2-\sqrt2)(2+\sqrt2)}=3+2\sqrt2 = 8 + 9 =\large \color{#20A900}{\boxed{\sqrt8+\sqrt9}}

Pi Han Goh
Jul 21, 2016

Relevant wiki: Tangent - Sum and Difference Formulas

The ratio x y \dfrac xy can expressed as tan ( A + B ) \tan(A + B ) .

Let P Q = Q R = R T = k PQ = QR = RT = k . Then by Pythagorean theorem , P R 2 = P Q 2 + Q R 2 = k 2 + k 2 P R = k 2 PR^2 = PQ^2 + QR^2 = k^2 + k^2 \Rightarrow PR = k\sqrt2 .

So tan B = Q R P Q = k k = 1 \tan B = \dfrac{QR}{PQ} = \dfrac kk = 1 and tan A = R T P R = k k 2 = 1 2 \tan A = \dfrac{RT}{PR} = \dfrac k {k\sqrt2} = \dfrac1{\sqrt2} .

Hence, by compound angle formula ,

x y = tan ( A + B ) = tan A + tan B 1 tan A tan B = 1 + 1 2 1 1 1 2 = 2 + 1 2 1 = ( 2 + 1 ) 2 ( 2 1 ) ( 2 + 1 ) = 2 + 1 + 2 2 2 1 = 3 + 2 2 = 8 + 9 . \begin{aligned} \dfrac xy = \tan (A+B) &=& \dfrac{\tan A + \tan B}{1 - \tan A \tan B} \\ &=& \dfrac{1 + \frac1{\sqrt2}}{1 - 1 \cdot \frac1{\sqrt2}} \\ &=& \dfrac{\sqrt2 + 1}{\sqrt2 - 1} \\ &=& \dfrac{(\sqrt2 + 1)^2}{(\sqrt2 - 1)(\sqrt2 + 1)} \\ &=& \dfrac{2 + 1 + 2\sqrt2}{2 - 1} \\ &=& 3 + 2\sqrt2 = \boxed{\sqrt8 + \sqrt9} \; . \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...