Standard Algebra with Unknown Integers

Algebra Level 2

If: 2 a + 3 b = c a + b + c = 42 c a = 19 2a + 3b = c \\ a+b+c = 42 \\ c - a = 19 Find: c + 1 a b \dfrac{c+1}{ab} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ashish Menon
May 14, 2016

2 a + 3 b = c 2 a + 3 b c = 0 1 a + b + c = 42 2 c a = 19 a + c = 19 3 Multiplying 2 by 3, we get : 3 a + 3 b + 3 c = 126 4 Subtracting 1 from 4 we get : a + 4 c = 126 5 Adding 3 and 5 we get : 5 c = 145 c = 29 Substituting c = 29 in 3 we get : a + 29 = 19 a = 10 Substituting c=29 and a=10 in 2 we get : 10 + b + 29 = 42 b = 3 c + 1 a b = 29 + 1 10 × 3 = 30 30 = 1 \begin{aligned} 2a + 3b & = c\\ 2a + 3b - c & = 0 \longrightarrow \boxed{1}\\ \\ a + b + c & = 42 \longrightarrow \boxed{2}\\ \\ c - a & = 19\\ -a + c & = 19 \longrightarrow \boxed{3}\\ \\ \text{Multiplying} \boxed{2} \text{by 3, we get}:-\\ 3a + 3b + 3c & = 126 \longrightarrow \boxed{4}\\ \\ \text{Subtracting} \boxed{1} \text{from} \boxed{4} \text{we get}:-\\ a + 4c & = 126 \longrightarrow \boxed{5}\\ \\ \text{Adding} \boxed{3} \text{and} \boxed{5} \text{we get}:-\\ 5c & = 145\\ c & = \color{#3D99F6}{29}\\ \\ \text{Substituting c = 29 in} \boxed{3} \text{we get}:-\\ -a + 29 & = 19\\ a & = \color{#D61F06}{10}\\ \\ \text{Substituting c=29 and a=10 in} \boxed{2} \text{we get}:-\\ 10 + b + 29 & = 42\\ b & = \color{#20A900}{3}\\ \\ \implies \dfrac{c + 1}{ab} & = \dfrac{\color{#3D99F6}{29} + 1}{\color{#D61F06}{10} × \color{#20A900}{3}}\\ & = \dfrac{30}{30}\\ & = \color{#69047E}{\boxed{1}} \end{aligned}
Q.E.D \boxed{\text{Q.E.D}}

Nice elimination

Hung Woei Neoh - 5 years, 1 month ago
Hung Woei Neoh
May 14, 2016

2 a + 3 b = c 2a+3b=c \implies Eq.(1)

a + b + c = 42 a+b+c = 42 \implies Eq.(2)

c a = 19 c = a + 19 c-a=19 \implies c=a+19 \implies Eq.(3)

Substitute Eq.(3) into Eq.(1) and Eq.(2):

2 a + 3 b = a + 19 a + 3 b = 19 2a + 3b = a+19 \implies a+3b=19 \implies Eq.(4)

a + b + a + 19 = 42 b = 23 2 a a+b+a+19 = 42 \implies b=23-2a \implies Eq.(5)

Substitute Eq.(5) into Eq.(4):

a + 3 ( 23 2 a ) = 19 a + 69 6 a = 19 5 a = 50 a = 10 a+3(23-2a)=19\\ a+69-6a=19\\ 5a=50\\ a=10

Use this to find b b and c c :

b = 23 2 ( 10 ) = 3 c = 10 + 19 = 29 b=23-2(10) = 3\\ c=10+19=29

c + 1 a b = 29 + 1 10 × 3 = 30 30 = 1 \dfrac{c+1}{ab} = \dfrac{29+1}{10 \times 3} = \dfrac{30}{30} = \boxed{1}

Nice substitution.

Ashish Menon - 5 years, 1 month ago
David Hontz
May 13, 2016

Solving Equation 3) for c c yields c = 19 + a c=19 +a while solving Equation 1) for b b yields b = c 2 a 3 = 19 + a 2 a 3 = 19 a 3 b =\frac{c - 2a}{3}=\frac{19 + a - 2a}{3}=\frac{19 - a}{3}

Now, plugging all this into equation 2) yields a + 19 a 3 + 19 + a = 42 a+\frac{19 - a}{3}+19+a =42 .

19 a 3 + 2 a = 42 19 19 a + 6 a 3 = 23 19 + 5 a = 23 × 3 = 69 5 a = 69 19 = 50 a = 50 5 = 10 \frac{19 - a}{3}+2a=42-19 \\ \frac{19 - a + 6a}{3}=23 \\ 19 + 5a = 23\times3 = 69 \\ 5a = 69 - 19 = 50 \\ a=\frac{50}{5}=10 .

Knowing a a , it is possible to solve for both b b and c c .

b = 19 a 3 = 19 10 3 = 9 3 = 3 b = 3. c = 19 + a = 19 + 10 = 29 b=\frac{19 - a}{3}=\frac{19 - 10}{3}=\frac{9}{3}= 3 \implies b = 3. \\ c = 19 +a = 19 + 10 = 29 .

a = 10 ; b = 3 ; c = 29 a = 10; b = 3; c = 29

c + 1 a b = 29 + 1 10 × 3 = 30 30 = 1 \therefore \frac{c+1}{ab}=\frac{29+1}{10 \times 3}=\frac{30}{30}= \boxed{1} .

Correction: Equation 3) for c c

Don't use 23 x 3 23x3 . Use "\times" instead

Hung Woei Neoh - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...