There is a group of numbers all belong to the set . If all numbers in the group are squared , the standard deviation of the group remains unchanged . Which of the following(s) about the set must satisfy the condition above ?
(1).
(2).
(3).
(4).
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
p 1 denotes number of p , p 2 denotes number of q , σ 1 denotes original standard deviation and σ 2 denotes new standard deviation
For (1) :
( p 1 + p 2 ) σ 1 2 = ( p 1 + p 2 ( 0 ) p 1 + ( 1 ) p 2 − 0 ) 2 + ( p 1 + p 2 ( 0 ) p 1 + ( 1 ) p 2 − 1 ) 2 = ( p 1 + p 2 p 2 ) 2 + ( p 1 + p 2 − p 1 ) 2 ( p 1 + p 2 ) σ 2 2 = ( p 1 + p 2 ( 0 2 ) p 1 + ( 1 2 ) p 2 − 0 2 ) 2 + ( p 1 + p 2 ( 0 2 ) p 1 + ( 1 2 ) p 2 − 1 2 ) 2 = ( p 1 + p 2 p 2 ) 2 + ( p 1 + p 2 − p 1 ) 2 = ( p 1 + p 2 ) σ 1 2
∴ (1) is correct
For (2) :
( p 1 + p 2 ) σ 1 2 = ( p 1 + p 2 ( − 1 ) p 1 + ( 0 ) p 2 − ( − 1 ) ) 2 + ( p 1 + p 2 ( − 1 ) p 1 + ( 0 ) p 2 − 0 ) 2 = ( p 1 + p 2 p 2 ) 2 + ( p 1 + p 2 − p 1 ) 2 ( p 1 + p 2 ) σ 2 2 = ( p 1 + p 2 ( − 1 ) 2 p 1 + ( 0 2 ) p 2 − ( − 1 ) 2 ) 2 + ( p 1 + p 2 ( − 1 ) 2 p 1 + ( 0 2 ) p 2 − 0 2 ) 2 = ( p 1 + p 2 p 2 ) 2 + ( p 1 + p 2 − p 1 ) 2 = ( p 1 + p 2 ) σ 1 2
∴ (2) is correct
For (3) :
( p 1 + p 2 ) σ 1 2 = ( p 1 + p 2 ( − 1 ) p 1 + ( 1 ) p 2 − ( − 1 ) ) 2 + ( p 1 + p 2 ( − 1 ) p 1 + ( 1 ) p 2 − 1 ) 2 = ( p 1 + p 2 2 p 2 ) 2 + ( p 1 + p 2 − 2 p 1 ) 2
( p 1 + p 2 ) σ 2 2 = 0 ( Note that all datas equal 1 )
∴ (3) is wrong
For (4) :
( p 1 + p 2 ) σ 1 2 = ( p 1 + p 2 ( − 2 ) p 1 + ( 1 ) p 2 − ( − 2 ) ) 2 + ( p 1 + p 2 ( − 2 ) p 1 + ( 1 ) p 2 − 1 ) 2 = ( p 1 + p 2 3 p 2 ) 2 + ( p 1 + p 2 − 3 p 1 ) 2 ( p 1 + p 2 ) σ 2 2 = ( p 1 + p 2 ( − 2 ) 2 p 1 + ( 1 2 ) p 2 − ( − 2 ) 2 ) 2 + ( p 1 + p 2 ( − 2 ) 2 p 1 + ( 1 2 ) p 2 − 1 2 ) 2 = ( p 1 + p 2 3 p 2 ) 2 + ( p 1 + p 2 3 p 1 ) 2 = ( p 1 + p 2 ) σ 2 1
∴ (4) is correct