Standard deviation(2)

σ = i = 1 n ( x i x ˉ ) 2 n \large \sigma = \sqrt{\dfrac{\sum_{i=1}^{n}(x_{i}-\bar{x})^2}{n}}

There is a group of numbers all belong to the set { p , q } \{p,q\} . If all numbers in the group are squared , the standard deviation σ \sigma of the group remains unchanged . Which of the following(s) about the set { p , q } \{p,q\} must satisfy the condition above ?

(1). { p , q } = { 0 , 1 } \{p,q\} = \{0,1\}

(2). { p , q } = { 1 , 0 } \{p,q\} = \{-1,0\}

(3). { p , q } = { 1 , 1 } \{p,q\} = \{-1,1\}

(4). { p , q } = { 2 , 1 } \{p,q\} = \{-2,1\}

(1) and (2) (1) , (2) and (4) (1) only (1) , (2) and (3) (1) and (3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Dec 23, 2017

p 1 p_{1} denotes number of p p , p 2 p_{2} denotes number of q q , σ 1 \sigma_{1} denotes original standard deviation and σ 2 \sigma_{2} denotes new standard deviation


For (1) :

( p 1 + p 2 ) σ 1 2 = ( ( 0 ) p 1 + ( 1 ) p 2 p 1 + p 2 0 ) 2 + ( ( 0 ) p 1 + ( 1 ) p 2 p 1 + p 2 1 ) 2 = ( p 2 p 1 + p 2 ) 2 + ( p 1 p 1 + p 2 ) 2 ( p 1 + p 2 ) σ 2 2 = ( ( 0 2 ) p 1 + ( 1 2 ) p 2 p 1 + p 2 0 2 ) 2 + ( ( 0 2 ) p 1 + ( 1 2 ) p 2 p 1 + p 2 1 2 ) 2 = ( p 2 p 1 + p 2 ) 2 + ( p 1 p 1 + p 2 ) 2 = ( p 1 + p 2 ) σ 1 2 \large (p_{1}+p_{2})\sigma_{1}^2 = (\frac{(0)p_{1}+(1)p_{2}}{p_{1}+p_{2}}-0)^2+(\frac{(0)p_{1}+(1)p_{2}}{p_{1}+p_{2}}-1)^2 = (\frac{p_{2}}{p_{1}+p_{2}})^2+(\frac{-p_{1}}{p_{1}+p_{2}})^2 \\ \large (p_{1}+p_{2})\sigma_{2}^2 = (\frac{(0^2)p_{1}+(1^2)p_{2}}{p_{1}+p_{2}}-0^2)^2+(\frac{(0^2)p_{1}+(1^2)p_{2}}{p_{1}+p_{2}}-1^2)^2 = (\frac{p_{2}}{p_{1}+p_{2}})^2+(\frac{-p_{1}}{p_{1}+p_{2}})^2 = (p_{1}+p_{2})\sigma_{1}^2

\therefore (1) is correct


For (2) :

( p 1 + p 2 ) σ 1 2 = ( ( 1 ) p 1 + ( 0 ) p 2 p 1 + p 2 ( 1 ) ) 2 + ( ( 1 ) p 1 + ( 0 ) p 2 p 1 + p 2 0 ) 2 = ( p 2 p 1 + p 2 ) 2 + ( p 1 p 1 + p 2 ) 2 ( p 1 + p 2 ) σ 2 2 = ( ( 1 ) 2 p 1 + ( 0 2 ) p 2 p 1 + p 2 ( 1 ) 2 ) 2 + ( ( 1 ) 2 p 1 + ( 0 2 ) p 2 p 1 + p 2 0 2 ) 2 = ( p 2 p 1 + p 2 ) 2 + ( p 1 p 1 + p 2 ) 2 = ( p 1 + p 2 ) σ 1 2 \large (p_{1}+p_{2})\sigma_{1}^2 = (\frac{(-1)p_{1}+(0)p_{2}}{p_{1}+p_{2}}-(-1))^2+(\frac{(-1)p_{1}+(0)p_{2}}{p_{1}+p_{2}}-0)^2 = (\frac{p_{2}}{p_{1}+p_{2}})^2+(\frac{-p_{1}}{p_{1}+p_{2}})^2 \\ \large (p_{1}+p_{2})\sigma_{2}^2 = (\frac{(-1)^2p_{1}+(0^2)p_{2}}{p_{1}+p_{2}}-(-1)^2)^2+(\frac{(-1)^2p_{1}+(0^2)p_{2}}{p_{1}+p_{2}}-0^2)^2 = (\frac{p_{2}}{p_{1}+p_{2}})^2+(\frac{-p_{1}}{p_{1}+p_{2}})^2 = (p_{1}+p_{2})\sigma_{1}^2

\therefore (2) is correct


For (3) :

( p 1 + p 2 ) σ 1 2 = ( ( 1 ) p 1 + ( 1 ) p 2 p 1 + p 2 ( 1 ) ) 2 + ( ( 1 ) p 1 + ( 1 ) p 2 p 1 + p 2 1 ) 2 = ( 2 p 2 p 1 + p 2 ) 2 + ( 2 p 1 p 1 + p 2 ) 2 \large (p_{1}+p_{2})\sigma_{1}^2 = (\frac{(-1)p_{1}+(1)p_{2}}{p_{1}+p_{2}}-(-1))^2+(\frac{(-1)p_{1}+(1)p_{2}}{p_{1}+p_{2}}-1)^2 = (\frac{2p_{2}}{p_{1}+p_{2}})^2+(\frac{-2p_{1}}{p_{1}+p_{2}})^2

( p 1 + p 2 ) σ 2 2 = 0 \large (p_{1}+p_{2})\sigma_{2}^2 =0 ( Note that all datas equal 1 1 )

\therefore (3) is wrong


For (4) :

( p 1 + p 2 ) σ 1 2 = ( ( 2 ) p 1 + ( 1 ) p 2 p 1 + p 2 ( 2 ) ) 2 + ( ( 2 ) p 1 + ( 1 ) p 2 p 1 + p 2 1 ) 2 = ( 3 p 2 p 1 + p 2 ) 2 + ( 3 p 1 p 1 + p 2 ) 2 ( p 1 + p 2 ) σ 2 2 = ( ( 2 ) 2 p 1 + ( 1 2 ) p 2 p 1 + p 2 ( 2 ) 2 ) 2 + ( ( 2 ) 2 p 1 + ( 1 2 ) p 2 p 1 + p 2 1 2 ) 2 = ( 3 p 2 p 1 + p 2 ) 2 + ( 3 p 1 p 1 + p 2 ) 2 = ( p 1 + p 2 ) σ 2 1 \large (p_{1}+p_{2})\sigma_{1}^2 = (\frac{(-2)p_{1}+(1)p_{2}}{p_{1}+p_{2}}-(-2))^2+(\frac{(-2)p_{1}+(1)p_{2}}{p_{1}+p_{2}}-1)^2 = (\frac{3p_{2}}{p_{1}+p_{2}})^2+(\frac{-3p_{1}}{p_{1}+p_{2}})^2 \\ \large (p_{1}+p_{2})\sigma_{2}^2 = (\frac{(-2)^2p_{1}+(1^2)p_{2}}{p_{1}+p_{2}}-(-2)^2)^2+(\frac{(-2)^2p_{1}+(1^2)p_{2}}{p_{1}+p_{2}}-1^2)^2 = (\frac{3p_{2}}{p_{1}+p_{2}})^2+(\frac{3p_{1}}{p_{1}+p_{2}})^2 = (p_{1}+p_{2})\sigma_{2}^1

\therefore (4) is correct


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...