Standard question in log

Algebra Level 2

( 3 log 4 ( log 3 x ) ) ( 2 log 64 ( log 3 x ) 1 ) = 1 \big(3\log_{4}(\log_{3}x)\big)\big(2\log_{64}(\log_{3}x) -1\big) =-1

Find the sum of all the positive integers x x satisfying the equation above.


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Jan 14, 2020

Let u = l o g 4 ( l o g 3 x ) u = log_{4}(log_{3}x) and let us rewrite the above equation as:

3 u ( 2 u l o g 4 ( 64 ) 1 ) 3 u ( 2 3 u 1 ) = 1 ; 3u(2 \cdot \frac{u}{log_{4}(64)} - 1) \Rightarrow 3u(\frac{2}{3}u - 1) = -1;

or 2 u 2 3 u + 1 = 0 2u^2 - 3u + 1 = 0 ;

or ( 2 u 1 ) ( u 1 ) = 0 ; (2u-1)(u-1) = 0;

or u = 1 2 , 1. u = \frac{1}{2}, 1.

Now we substitute back to obtain: l o g 4 ( l o g 3 x ) = 1 2 , 1 l o g 3 x = 2 , 4 x = 9 , 81. log_{4}(log_{3}x) = \frac{1}{2}, 1 \Rightarrow log_{3}x = 2, 4 \Rightarrow x = 9, 81. Hence, the sum of all such x x equals 9 + 81 = 90 . 9+ 81 = \boxed{90}.

David Vreken
Jan 17, 2020

Let log 3 x = 4 3 y \log_3 x = 4^{3y} . Then by substitution:

3 log 4 ( log 3 x ) ( 2 log 64 ( log 3 x ) 1 ) = 1 3 \log_4 (\log_3 x) (2 \log_{64} (\log_3 x) - 1) = -1

3 log 4 4 3 y ( 2 log 64 4 3 y 1 ) = 1 3 \log_4 4^{3y} (2 \log_{64} 4^{3y} - 1) = -1

3 3 y ( 2 y 1 ) = 1 3 \cdot 3y \cdot (2 \cdot y - 1) = -1

18 y 2 9 y + 1 = 0 18y^2 - 9y + 1 = 0

( 3 y 1 ) ( 6 y 1 ) = 0 (3y - 1)(6y - 1) = 0

3 y = 1 3y = 1 or 6 y = 1 6y = 1

If 3 y = 1 3y = 1 , then:

log 3 x = 4 3 y \log_3 x = 4^{3y}

log 3 x = 4 1 \log_3 x = 4^1

x = 3 4 = 81 x = 3^4 = 81

If 6 y = 1 6y = 1 , then 3 y = 1 2 3y = \frac{1}{2} and:

log 3 x = 4 3 y \log_3 x = 4^{3y}

log 3 x = 4 1 2 \log_3 x = 4^{\frac{1}{2}}

x = 3 2 = 9 x = 3^2 = 9

Therefore, the sum of the two solutions for x x is 81 + 9 = 90 81 + 9 = \boxed{90} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...